\hat{g}^{**} s-closed sets in topological spaces

AntoM⁽¹⁾& Andrin Shahila S⁽²⁾

⁽¹⁾ Associate Professor and ⁽²⁾ PhD Scholar (Reg.No:19123012092018) P.G and Research Department of Mathematics, Annai Velankanni college, Tholayavattam, Kanyakumari District ,629157, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India;

Abstract

In this paper we introduce a new class of sets namely, \hat{g}^{**} s-closed sets, which is settled in between the class of g^* s-closed sets and the class of gs-closed sets. Also, we compared it with other generalized closed sets and we find that the union of two \hat{g}^{**} s-closed sets is not an \hat{g}^{**} s-closed set and the intersection of two \hat{g}^{**} s-closed sets is again an \hat{g}^{**} sclosed set.

Keyword: $\hat{g}^{**}s$ -closed sets, g^*s -closed sets, gs-closed sets.

I. INTRODUCTION

Levine introduced the class of semi open sets in 1963[11]and g-closed sets[12] in 1970.M.K.R.S.Veera Kumar defined \hat{g} -closed sets[7] in 2001 and \hat{g}^* -closed sets[9] in 1996. The authors introduce a new class of sets called $\hat{g}^{**}s$ -closed sets, which properly placed in between the class of g^*s closed sets and the class of gs-closed sets.

II.PRELIMINARIES

Throughout this paper (X, τ) represent the non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A) and int (A) denote the closure and interior of A respectively.

A. Definition:

A subset A of a topological space (X, τ) is called

- 1) A semi-open set [11] if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- 2) A semi pre-open set[1] if $A \subseteq cl(int(cl(A)))$ and a semi pre-closed set if $int(cl(int(A))) \subseteq A$.
- 3) An α -open set [3] if $A \subseteq int(cl(int(A)))$ and an α -closed set if $cl(int(cl(A))) \subseteq A$.
- 4) A regular open set[16] if A = int(cl(A))and a regular closed set if A = cl(int(A)).

B. Definition:

A subset A of a topological space (X, τ) is called

- 1) A generalized closed set (briefly g- closed) [12] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ) .
- A generalized semi-closed set (briefly gsclosed) [15] if scl(A) ⊆ U, whenever A ⊆ U and U is open in (X, τ).
- A ĝ-closed or (w-closed) [7] set if cl(A) ⊆ U, whenever A ⊆ U and U is semi open in (X, τ).
- 4) A generalized pre-closed set (briefly gp-closed) [3] if pcl(A) ⊆ U, whenever A ⊆ U and U is open in (X, τ).
- 5) A $g^*closed set[6]$ if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open in (X, τ) .
- 6) $A \ \hat{g}^*$ -closed or (*g-closed) set[9] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- 7) A g^{**} -closed set[8] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g^* -open in (X, τ) .
- 8) A g^*s -closed set[4] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is gs-open in (X, τ) .
- 9) $A \ \hat{g}^*s$ -closed set[14] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- 10) A g^{*s^*} -closed set [or $(sg^*$ -closed set) or $((sg)^*$ -closed set)] [10] if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is g^* -open in (X, τ) .
- 11) A gs^{**} -closed set[2] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is gs^{*-} open in (X, τ) .
- 12) A gs*-closed set or $[(gs)^*$ -closed sets] [5] if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is gs- open in (X, τ) .

C. Results:

- 1)Every \hat{g}^* -closed sets are *gs*-closed set. [9]
- 2)Every \hat{g}^* -closed sets are *g*-closed set. [9]
- 3)Every closed sets are \hat{g}^* -closed set. [9]
- 4)Every g^* closed sets are \hat{g}^* -closed set. [9]

D. Notations used:

- 1) scl(A) semi closure of A.
- 2) pcl(A)- pre-closure of A.

III. BASIC PROPERTIES OF $\hat{g}^{**}s$ -CLOSED SETS

We now introduce the following definitions.

Definition: 3.1

A subset *A* of a topological space (X, τ) is called a $\hat{g}^{**}s$ -closed set if $scl(A) \subseteq U$, whenever $A \subseteq U$ and *U* is \hat{g}^* -open in (X, τ) .

Theorem:3.2

Every closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let A be a closed set in X.

Let $A \subseteq U$ and U is \hat{g}^* -open. Since A is closed $cl(A) \subseteq U$.

But $scl(A) \subseteq cl(A) \subseteq U$

 \Rightarrow scl(A) \subseteq U.

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.3

Example:3.4 shows that the converse of the above theorem is not true

Example:3.4

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, A = \{b\}$ is $\hat{g}^{**}s$ -closed but not closed.

Theorem: 3.5

Every semi closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let A be a semi closed set in X.

Let $A \subseteq U$ and U is \hat{g}^* -open.

Since A is semi-closed, $scl(A) \subseteq U$.

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.6:

Example:3.7 shows that the converse of the above theorem is not true

Example: 3.7

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{c\}, \{b, c\}\},\$

 $A = \{a, c\}$ is $\hat{g}^{**}s$ -closed but not semi-closed.

Theorem: 3.8

Every α -closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let A be a α -closed set in X.

Let $A \subseteq U$ and U is \hat{g}^* -open.

Since A is
$$\alpha$$
-closed, $\alpha cl(A) = A \subseteq U$.

$$\Rightarrow \alpha cl(A) \subseteq U.$$

But every α -closed set is semi-closed.

 \Rightarrow scl(A) \subseteq U.

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.9

Example:3.10 shows that the converse of the above theorem is not true

Example: 3.10

Let
$$X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}\},\$$

 $A = \{b\}$ is $\hat{g}^{**}s$ -closed but not α -closed.

Theorem: 3.11

Every regular closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let A be a regular closed set in X.

Let $A \subseteq U$ and U is \hat{g}^* -open.

Since A is regular-closed, $rcl(A) \subseteq U$.

But $scl(A) \subseteq rcl(A) \subseteq U$.

 $\Rightarrow scl(A) \subseteq U.$

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.12:

Example:3.13 shows that the converse of the above theorem is not true

Example: 3.13

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, A = \{c\}$ is $\hat{g}^{**}s$ -closed but not r-closed.

Theorem: 3.14

Every g^*s -closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let *A* be a g^*s -closed set in X. Let $A \subseteq U$ and *U* is \hat{g}^* -open. But all \hat{g}^* -open sets are *gs*-open. Thus $A \subseteq U$ and *U* is *gs*-open. $\Rightarrow scl(A) \subseteq U$. [Since A is g^*s -closed set]

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.15:

Example:3.16 shows that the converse of the above theorem is not true

Example:3.16

Let
$$X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\},\$$

 $A = \{b\}$ is $\hat{g}^{**}s$ -closed but not g^*s -closed.

Theorem: 3.17

Every g^* -closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let A be a g^* -closed set in X.

Let $A \subseteq U$ and U is \hat{g}^* -open.

But all \hat{g}^* -open sets are *g*-open sets.

Thus $A \subseteq U$ and U is g-open.

$$\Rightarrow$$
 cl(*A*) \subseteq *U*. [Since A is *g*^{*}-closed set]

But
$$scl(A) \subseteq cl(A) \subseteq U$$

 \Rightarrow scl(A) \subseteq U.

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.18:

Example:3.19 shows that the converse of the above theorem is not true

Example: 3.19

Let
$$X = \{a, b, c\}, \ \tau = \{\phi, X, \{a\}, \{b, c\}\},\$$

 $A = \{b\}$ is a $\hat{g}^{**}s$ -closed but not g^* -closed.

Theorem: 3.20

Every $(gs)^*$ -closed set is $\hat{g}^{**}s$ -closed.

Proof:

Let A be a $(gs)^*$ -closed set in X.

Let $A \subseteq U$ and U is \hat{g}^* -open.

But all \hat{g}^* -open sets are gs-open sets.

Thus $A \subseteq U$ and U is gs-open.

$$\Rightarrow$$
 $cl(A) \subseteq U$. [Since A is $(gs)^*$ -closed set]

But $scl(A) \subseteq cl(A) \subseteq U$

$$\Rightarrow$$
 scl(A) \subseteq U.

Hence A is $\hat{g}^{**}s$ -closed.

Remark: 3.21:

Example:3.22 shows that the converse of the above theorem is not true

Example: 3.22

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}, A = \{b\}$ is $a\hat{g}^{**}s$ -closed but not $(gs)^*$ -closed.

Theorem: 3.23

Every $\hat{g}^{**}s$ -closed set is gs-closed.

Proof:

Let A be a $\hat{g}^{**}s$ -closed set in X.

Let $A \subseteq U$ and U is open.

But all open sets are \hat{g}^* -open sets.

Thus $A \subseteq U$ and U is \hat{g}^* -open.

 \Rightarrow scl(A) \subseteq U. [Since A is $\hat{g}^{**}s$ -closed set]

Hence A is *gs*-closed.

Remark: 3.24:

Example:3.25 shows that the converse of the above theorem is not true

Example:3.25

Let $X = \{a, b, c\}, \ \tau = \{\phi, X, \{a\}\},\$

 $A = \{a, b\}$ is a *gs*-closed but not \hat{g}^{**s} -closed.

Theorem: 3.26

Every $\hat{g}^{**}s$ -closed set is $(sg)^*$ -closed.

Proof:

Let A be a $\hat{g}^{**}s$ -closed set in X.

Let $A \subseteq U$ and U is open.

But all g^* - open sets are \hat{g}^* - open sets.

Thus $A \subseteq U$ and U is \hat{g}^* - open.

 \Rightarrow scl(A) \subseteq U. [Since A is $\hat{g}^{**}s$ -closed set]

Hence A is $(sg)^*$ -closed.

Remark: 3.27:

Example:3.28 shows that the converse of the above theorem is not true

Example: 3.28

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\},\$

 $A = \{a, b\}$ is $a(sg)^*$ -closed but not $\hat{g}^{**}s$ -closed.

Remark: 3.29

 \hat{g}^*s^* -closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a\}\}$.

Let $A = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a \hat{g}^*s^* -closed set and $B = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ isa $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a, b\}$ and $\{a, c\}$ belongs to *A* but does not belongs to *B*.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a \hat{g}^*s^* -closed set but not a \hat{g}^{**s} -closed set.

Hence, a \hat{g}^*s^* -closed set need not be a $\hat{g}^{**}s^-$ closed set. \longrightarrow (1)

Similarly, Consider the topological space $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}.$

Let $A = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a $\hat{g}^{**}s$ -closed set and $B = \{\phi, X, \{a\}, \{b, c\}\}$ is a \hat{g}^*s^* -closed set in the topological space τ_2 .

Here, the sets $\{b\}$, $\{c\}$, $\{a, b\}$ and $\{a, c\}$

belongs to A but does not belongs to B.

Therefore, the sets{b}, {c}, {a, b} and {a, c}

are a $\hat{g}^{**}s$ -closed set but not a \hat{g}^*s^* -closed set.

Hence, a $\hat{g}^{**}s$ -closed set need not be a \hat{g}^*s^* closed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that \hat{g}^*s^* -closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.30

 gs^{**} -closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a\}\}$.

Let $A = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a gs^{**} -closed set and $B = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ is a $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a, b\}$ and $\{a, c\}$ belongs to *A* but does not belongs to *B*.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a gs^{**} -closed set but not a $\hat{g}^{**}s$ -closed set.

Hence, a gs^{**} -closed set need not be a $\hat{g}^{**}s$ closed set. \longrightarrow (1) Similarly, Consider the topological space

 $\tau_2 = \{\phi, X, \{c\}, \{b, c\}\}.$

Let $A = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ is $\hat{g}^{**}s$ closed set and $B = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ is a gs^{**} -closed set in the topological space τ_2 .

Here, the set $\{b\}$ belongs to A but does not belongs to B.

Therefore, the set $\{b\}$ is a $\hat{g}^{**}s$ -closed set but not a gs^{**} -closed set.

Hence, a $\hat{g}^{**}s$ -closed set need not be a gs^{**} -closed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that gs^{**} -closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.31

 \hat{g}^* -closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a\}\}$.

Let $A = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a \hat{g}^* -closed set and $B = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ is a $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a, b\}$ and $\{a, c\}$ belongs to *A* but does not belongs to *B*.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a \hat{g}^* -closed set but not a $\hat{g}^{**}s$ -closed set.

Hence, a \hat{g}^* -closed set need not be a $\hat{g}^{**}s$ closed set. \longrightarrow (1)

Similarly, Consider the topological space

 $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}.$

Let $A = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is $\hat{g}^{**}s$ -closed set and $B = \{\phi, X, \{a\}, \{b, c\}\}$ is a \hat{g}^{*-} closed set in the topological space τ_2 .

Here, the sets $\{b\}, \{c\}, \{a, b\}$ and $\{a, c\}$ belongs to A but does not belongs to B.

Therefore, the sets{*b*}, {*c*}, {*a, b*} and {*a, c*} are a \hat{g}^{**} s-closed set but not a \hat{g}^{*} -closed set.

Hence, a $\hat{g}^{**}s$ -closed set need not be a \hat{g}^{*-} closed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that \hat{g}^* -closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.32

 g^{**} -closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a\}\}$.

Let $A = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a g^{**} -closed set and $B = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ is a $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a, b\}$ and $\{a, c\}$ belongs to *A* but does not belongs to *B*.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a g^{**} -closed set but not a $\hat{g}^{**}s$ -closed set.

Hence, a g^{**} -closed set need not be a $\hat{g}^{**}s$ closed set. \longrightarrow (1)

Similarly, Consider the topological space

 $\tau_2 = \{\phi, X, \{c\}, \{b, c\}\}.$

Let $A = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ is a $\hat{g}^{**}s$ -closed set and $B = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ is a g^{**} -closed set in the topological space τ_2 .

Here, the sets $\{b\}$ belongs to A but does not belongs to B.

Therefore, the set{*b*} is a $\hat{g}^{**}s$ -closed set but not a g^{**} -closed set.

Hence, a $\hat{g}^{**}s$ -closed set need not be a g^{**-} closed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that g^{**} -closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.33

sp-closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a, b\}\}$.

Let $A = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ is a *sp*-closed set and $B = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ is a $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a\}$ and $\{b\}$ belongs to A but does not belongs to B.

Therefore, the sets{a} and {b} are a spclosed set but not a $\hat{g}^{**}s$ -closed set.

Hence, a sp-closed set need not be a $\hat{g}^{**}s$ closed set. \longrightarrow (1)

Similarly, Consider the topological space

$$\tau_2 = \{\phi, X, \{c\}, \{b, c\}\}.$$

Let $A = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}\}$ is $\hat{g}^{**}s$ closed set and $B = \{\phi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ is a *sp*-closed set in the topological space τ_2 .

Here, the set $\{a, c\}$ belongs to A but does not belongs to B.

Therefore, the set $\{a, c\}$ is a $\hat{g}^{**}s$ -closed set but not a *sp*-closed set.

Hence, a $\hat{g}^{**}s$ -closed set need not be a spclosed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that *sp*-closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.34

gp-closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a\}\}$.

Let $A = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a *gp*-closed set and $B = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ is a $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a, b\}$ and $\{a, c\}$ belongs to *A* but does not belongs to *B*.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a *gp*-closed set but not a $\hat{g}^{**}s$ -closed set.

Hence, a gp-closed set need not be a $\hat{g}^{**}s$ closed set. \longrightarrow (1)

Similarly, Consider the topological space

$$\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}.$$

Let $A = \{\phi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ is a $\hat{g}^{**}s$ -closed set and $B = \{\phi, X, \{c\}, \{b, c\}, \{a, c\}\}$ is a *gp*-closed set in the topological space τ_2 .

Here, the sets $\{a\}$ and $\{b\}$ belongs to A but does not belongs to B.

Therefore, the sets{a} and {b} are a $\hat{g}^{**}s$ -closed set but not a *gp*-closed set.

Hence, $a\hat{g}^{**}s$ -closed set need not be a gp-closed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that, gp-closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.35

g-closed and $\hat{g}^{**}s$ -closed sets are independent.

Proof:

Let $X = \{a, b, c\}$.Consider the topological space $\tau_1 = \{\phi, X, \{a\}\}$.

Let $A = \{\phi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ is a *g*-closed set and $B = \{\phi, X, \{b\}, \{c\}, \{b, c\}\}$ is a $\hat{g}^{**}s$ -closed set in the topological space τ_1 .

Here, the sets $\{a, b\}$ and $\{a, c\}$ belongs to *A* but does not belongs to *B*.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a *g*-closed set but not a $\hat{g}^{**}s$ -closed set.

Hence, a g-closed set need not be a $\hat{g}^{**}s$ closed set. \longrightarrow (1)

Similarly, Consider the topological space

$$\tau_2 = \{\phi, X, \{c\}, \{b, c\}\}.$$

Let $A = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ is a $\hat{g}^{**}s$ -closed set and $B = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ is a *g*-closed set in the topological space τ_2 .

Here, the set $\{b\}$ belongs to A but does not belongs to B.

Therefore, the sets{*a*, *b*}and {*a*, *c*} are a $\hat{g}^{**}s$ -closed set but not a *g*-closed set.

Hence, a $\hat{g}^{**}s$ -closed set need not be a g-closed set. \longrightarrow (2)

Therefore, from (1) and (2), we can say that g-closed and $\hat{g}^{**}s$ -closed sets are independent.

Remark: 3.36

Union of two $\hat{g}^{**}s$ -closed sets need not be $\hat{g}^{**}s$ -closed.

Proof:

Let $X = \{a, b, c\}$.Consider the topology

$$\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}.$$

Here, $\{\phi, X, \{a\}, \{b\}, \{c\}, \{b, c\}, \{a, c\}\}$ is a $\hat{g}^{**}s$ -closed set.

Consider, two $\hat{g}^{**}s$ -closed elements $A = \{a\}$ and

$$B = \{b\}.$$

Here *A* and *B* are $\hat{g}^{**}s$ -closed sets but

 $A \cup B = \{a\} \cup \{b\} = \{a, b\}$ is not $\hat{g}^{**}s$ -closed set.

Theorem: 3.37

Let A and B be any two $\hat{g}^{**}s$ -closed sets in a topological space X. Then $A \cap B$ is also a $\hat{g}^{**}s$ -closed set in X.

Proof:

Let *A* and *B* be any two $\hat{g}^{**}s$ -closed sets.

Then
$$A \subseteq U$$
, U is a \hat{g}^* -open set and $B \subseteq U$, U is

a \hat{g}^* -open set.

Hence, $scl(A) \subseteq U$ and $scl(B) \subseteq U$.

Therefore,
$$scl(A \cap B) \subseteq scl(A) \cap scl(B) \subseteq U$$

 \Rightarrow scl($A \cap B$) $\subseteq U$, U is a \hat{g}^* -open set in X.

Hence, $A \cap B$ is also a $\hat{g}^{**}s$ -closed set in X.

Remark:3.38

From the above discussion, we obtain the following implications.

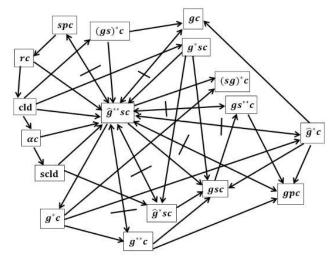


Figure:1

References:

- D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1) (1986), 24-32.
- [2] D.Narasimhan and R. Subhaa, gs**-closed sets, IJPAM-119(6) (2018), 209-218.
- [3] H. Maki, J. Umehara and T. Noiri, Every topological spaces is pre- T_{1/2}, Mem. Fac. Sci. Kochi.Univ. Ser. A, Math., 17 (1996), 33-42.
- K.Anitha, On g*s-closed sets in Topological spaces, Int. J. Contemp. Math., 6(19)(2011), 917-929.
- [5] L.Elvina Mary and R.Myvizhi, (gs)*- closed sets in topological spaces, International Journal of Mathematics Trends and Technology-7(2) (2014), 83-93.
- [6] M.K.R.S. Veerakumar, Between closed sets and g*closed sets, Mem. Fac. Sci. Kochi. Univ. Ser.A, Math., 17 (1996), 33-42.
- [7] M.K.R.S.Veera Kumar, ĝ-closed sets and G L Cfunctions, Indian J. Math., Indian J. Math., 43(2)(2001), 231-247.
- [8] M.Pauline Mary Helen, PonnuthaiSelvarani and Veronica Vijayan, g**- closed sets in topological spaces, IJMA-3(5), May-2012, 2005-2019.
- [9] M.Pauline Mary Helen and A.Gayathri, \hat{g}^* -closed sets in topological spaces, IJMTT-6(2) (2014), 60-74.
- [10] N.Gayathri, g*s*-closed sets in Topological Spaces IJMAA-4(2)-C(2016), 111-119.

- [11] N.Levine, Semi-open sets and semi-continuity in topological spaces, 70(1963), 36-41.
- [12] N.Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2) (1970), 89-96.
- [13] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J.Pure. Appl. Math., 21(8)(1990), 717-719.
- [14] S.Pious
Missier and M.Anto, \hat{g}^*s -closed set in topological spaces, International Journal of Modern

Engineering Research, Vol.4, issue 11(version 2), Nov 2014, 32-38.

- [15] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J.Pure. Appl.Math., 21(8) (1990), 717-719.
- [16] Y.Gnanambal, On generalized preregular closed sets in topological spaces, Indian J.Pure. Appl. Math., 28(3) (1997),351-360.