ON (K₁, K₂) - G*Bω - CLOSED SETS IN BiČEch Closure Spaces

P. Priyadharsini

Assistant Professor, Department of Mathematics, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam, Namakkal, Tamil Nadu.

Abstract : In this paper, we introduce the concepts of closed sets in biČech closure space called (k_1, k_2) generalized star b ω - closed sets, (k_1, k_2) generalized star b ω - open sets and study their basic properties and its characterizations.

Keywords : Bi \check{C} ech closure spaces, (k_1, k_2) generalized star $b \omega$ - closed sets, (k_1, k_2) generalized star $b\omega$ - open sets.

I INTRODUCTION

 \check{C} ech closure spaces were introduced by \check{C} ech [2]. In Čech's approach the operator satisfies idempotent condition among Kuratowski axioms. This condition need not hold for every set A of X. When this condition is also true, the operator becomes topological closure operator. Thus the concept of closure space is the generalisation of a topological space. Closure functions that are more general than the topological ones have been studied already by Day [6]. A thorough discussion on closure functions is due to Hammer, see eg. [9, 10] and more recently Gnilka [8, 9]. The notion of bitopological space were introduced by J.C. Kelly [7]. Such spaces are equipped with two arbitrary topologies. Furthermore, Kelly extended some of the standard results of separation axioms in a topological space to a bitopological space. In this paper we introduce the $g^*b\omega$ - closed sets in biČech closure spaces.

II PRELIMINARIES

Definition 2.1 [4] Two functions k_1 and k_2 from power set X to itself are called bi \check{C} ech closure

Dr. A. Parvathi

Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu.

operators (simply biclosure operator) for X if they satisfies the following properties:

i. $k_1(\phi) = \phi$ and $k_2(\phi) = \phi$

ii. $A \subset k_1(A)$ and $A \subset k_2(A)$, for any set $A \subset X$

iii. $k_1(A \cup B) = k_1(A) \cup k_1(B)$ and $k_2(A \cup B) = k_2(A)$ $\cup k_2(B)$ for any $A, B \subset X$

 (X, k_1, k_2) is called biČech closure space.

Example 2.2 Let $X = \{a, b, c\}$ and let k_1 and k_2 be defined as:

k1({a})	$= \{a\}$	k2({a})	$= \{a\}$
k1({b})	$= k1({c})$	k2({b})	$= \{b, c\}$
	$= k1(\{b, c\})$	k2({c})	$= k2(\{a, c\})$
	$= \{b, c\}$		$= \{a, c\}$
k1({a, b})	$= k1(\{a, c\})$	k2({a, b})	$= k2(\{b, c\})$
	$= k1({X})$		$=k2({X})$
	= X		$= \mathbf{X}$
k1(φ)	$= \phi$	k2(φ)	$= \phi$
Now (X, k_1 , k_2) is biČech closure space.			

Definition 2.3 [1] A subset A of a bi \check{C} ech closure space (X, k₁, k₂) is called *biclosed* if k₁A = A = k₂A

Definition 2.4 [3] A subset A in a bi \check{C} ech closure space (X, k_1 , k_2) is said to be

- i. k_i semi open if $A \subseteq k_i$ [int_{ki}(A)], i = 1, 2.
- ii. k_i semi closed if $int_{ki} [k_i(A)] \subseteq A, i = 1, 2.$

The intersection of all k_i - semi - closed subsets of X containing A is called the k_i - semi closure of A and is denoted by k_{is} (A).

III (k₁, k₂) - g*bω - CLOSED SETS

In this section, the concept of $(k_1, k_2) - g^*b\omega$ - closed sets in biČech closure spaces is defined and some of their characterizations and properties are studied.

Definition 3.1 A subset A in a bi \check{C} ech closure space (X, k_1, k_2) is said to be

- i. $k_i b closed$ if $(int_{ki} (k_i (A))) \cup (k_i (int_{ki} (A))) \subseteq A.$
- ii. $k_i b open$ if $A \subseteq (k_i (int_{ki} (A))) \cap (int_{ki} (k_i (A))).$

The intersection of all $k_i - b$ - closed subsets of X containing A is called the $k_i - b$ - *closure of A* and is denoted by k_{ib} (A). The union of all $k_i - b$ open subsets of X contained in A is called the $k_i - b$ *interior of A* and is denoted by $int_{k_{ib}}$ (A).

Definition 3.2 A set A of a biČech closure space (X, k_1, k_2) is said to be (k_1, k_2) - generalized semi closed (briefly, (k_1, k_2) - gs - closed) if $k_{2s}(A) \subseteq U$ whenever $A \subseteq U$ and U is k_1 - open in X.

Definition 3.3 A set A of a biČech closure space (X, k_1, k_2) is said to be (k_1, k_2) - *generalized star b omega closed* (briefly, (k_1, k_2) - $g^*b\omega$ - closed) if $k_{2b}(A) \subseteq U$ whenever $A \subseteq U$ and U is k_1 - gs - open in X.

Example 3.4 In example 2.2, $\{a\} \subseteq \{a, b\}$ is a $(k_1, k_2) - g^*b\omega$ - closed.

Remark 3.5 By setting $k_1 = k_2$ in definition 3.3, an $(k_1, k_2) - g^*b\omega$ - closed set is a čech $g^*b\omega$ - closed set .

Theorem 3.6 Every k_2 - closed set in X is (k_1, k_2) - $g^*b\omega$ - closed.

Proof. Let A be k_2 - closed in X such that $A \subseteq U$, where U is k_2 - gs - open. Since A is k_2 - closed, $k_2(A) = A \subseteq U$. But $k_{2b}(A) \subseteq k_2(A)$. Therefore $k_{2b}(A) \subseteq U$. Hence A is a (k_1, k_2) - g*b ω - closed set in X.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.7 In example 2.2, $\{c\}$ is a (k_1, k_2) - $g^*b\omega$ - closed but not k_2 - closed.

Theorem 3.8 Every k_2 - semi closed set in X is (k_1, k_2) - $g^*b\omega$ - closed.

Proof. Let A be k_2 - semi closed in X such that $A \subseteq U$, where U is k_2 - gs - open. Since A is k_2 - semi closed, $k_{2s}(A) = A \subseteq U$. But $k_{2b}(A) \subseteq k_{2s}(A)$. Therefore $k_{2b}(A) \subseteq U$. Hence A is a (k_1, k_2) - g*b ω - closed set in X.

The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.9 In example 2.2, $\{c\}$ is a (k_1, k_2) - $g^*b\omega$ - closed set but not k_2 - semi closed.

Theorem 3.10 If A and B are two $(k_1, k_2) - g^*b\omega$ - closed sets and so is A \cap B.

Proof. Let A and B be two $(k_1, k_2) - g^*b\omega$ - closed sets. Let U be k_1 - gs - closed in X. Let $(A \cap B) \subseteq U$. Since $(A \cap B) \subseteq U$, $A \subseteq U$ and $B \subseteq U$. Then $k_{2b}(A) \subseteq U$ and $k_{2b}(B) \subseteq U$ implies $k_{2b}(A) \cap k_{2b}(B) \subseteq U$. Hence $k_{2b}(A \cap B) \subseteq U$. Thus $A \cap B$ is a $(k_1, k_2) - g^*b\omega$ - closed set.

Theorem 3.11 If a subset A of a biČech closure space X is $(k_1, k_2) - g^*b\omega$ - closed then $k_{2b}(A) \setminus A$ contains no nonempty k_1 - gs - closed set.

Proof. Let A be a (k_1, k_2) - g*b ω - closed set and F be a k_1 - gs - closed set such that $F \subseteq k_{2b}(A) \setminus A$. Therefore $A \subseteq F^c$ and $F \subseteq k_{2b}(A)$. Since F is k_1 - gs closed, F^c is k_1 - gs - open and A is (k_1, k_2) - g*b ω closed, $k_{2b}(A) \subseteq F^c$. Thus $F \subseteq [k_{2b}(A)]^c =$ $X \setminus [k_{2b}(A)]$. Hence $F \subseteq [k_{2b}(A)] \cap [X \setminus [k_{2b}(A)]] =$ $\phi. \text{ Therefore } F = \phi. \text{ Hence } k_{2b}(A) \setminus A \text{ contains no} \\ \text{nonempty } k_1\text{- } gs \text{- closed set.}$

Theorem 3.12 Let A be an $(k_1, k_2) - g^*b\omega$ - closed set in X. Then A is $k_2 - b$ - closed if and only if $k_{2b}(A) \setminus A$ is k_1 - gs - closed in X.

Proof. Suppose that A is $(k_1, k_2) - g^*b\omega$ - closed. Let A be $k_2 - b$ - closed. Then $k_{2b}(A) = A$. Therefore $k_{2b}(A) \setminus A = \phi$ is $k_1 - gs$ - closed in X.

Conversely, suppose that A is $(k_1, k_2) - g^*b\omega$ - closed and $k_{2b}(A) \setminus A$ is $k_1 - gs$ - closed. Since A is $(k_1, k_2) - g^*b\omega$ - closed, $k_{2b}(A) \setminus A$ contains no nonempty $k_1 - gs$ - closed set (by Theorem 3.11). Since $k_{2b}(A) \setminus A$ is $k_1 - gs$ - closed, $k_{2b}(A) \setminus A = \varphi$. Then $k_{2b}(A) = A$. Hence A is $k_2 - b$ - closed.

Theorem 3.13 Let A and B be subsets of X such that $A \subseteq B \subseteq k_{2b}(A)$. If A is $(k_1, k_2) - g^*b\omega$ - closed then B is $(k_1, k_2) - g^*b\omega$ - closed.

Proof. Let A and B be subsets such that $A \subseteq B \subseteq k_{2b}(A)$. Suppose that A is $(k_1, k_2) - g^*b\omega$ - closed. Let $B \subseteq U$ and U be $k_1 - gs$ - open in X. Then $A \subseteq U$. Since A is $(k_1, k_2) - g^*b\omega$ - closed, $k_{2b}(A) \subseteq U$. Since $B \subseteq k_{2b}(A), k_{2b}(B) \subseteq k_{2b}[k_{2b}(A)] = k_{2b}(A) \subseteq U$. Therefore B is $(k_1, k_2) - g^*b\omega$ - closed.

Theorem 3.14 Let X be a biČech closure space. If $x \in X$ then singleton $\{x\}$ is either k_1 - gs - closed or $\{x\}^c$ is (k_1, k_2) - $g^*b\omega$ - closed set.

Proof. Let X be a bi \check{C} ech closure space. Let $x \in X$ and suppose that $\{x\}$ is not k_1 - gs - closed. Then $X \setminus \{x\}$ is not k_1 - gs - open. Consequently, X is the only k_1 - gs - open set containing the set $X \setminus \{x\}$. Therefore $X \setminus \{x\}$ is $(k_1, k_2) - g^*b\omega$ closed.

Theorem 3.15 Let $B \subseteq A \subseteq X$ and suppose that B is $(k_1, k_2) - g^*b\omega$ - closed in X, then B is $(k_1, k_2) - g^*b\omega$ - closed relative to A. The converse is true if A is k_1 - open and $(k_1, k_2) - g^*b\omega$ - closed in X.

Proof. Let B be $(k_1, k_2) - g^*b\omega$ - closed in X. Let B $\subseteq U$ and U be $k_1 - gs$ - open in A. Since U is $\tau_i - gs$ open in A, U = V \cap A, where V is $k_1 - gs$ - open in X. Hence B \subseteq U \subseteq V. Since B is $(k_1, k_2) - g^*b\omega$ - closed in X, $k_{2b}(B) \subseteq V$. Hence $k_{2b}(B) \cap A \subseteq V \cap A$, which in turn implies that $A \cap k_{2b}(B) \subseteq V \cap A = U$. Therefore B is (k_1, k_2) - g*b ω - closed relative to A.

Now to prove the converse, assume the given condition. Let $B \subseteq U$ and U be $k_1 - gs - open$ in X. Then $A \cap U$ is $k_1 - gs - open$ in A. Since $B \subseteq A$ and $B \subseteq U$, $B \subseteq A \cap U$. Since B is $(k_1, k_2) - g^*b\omega$ - closed relative to A, $A \cap k_{2b}(B) \subseteq A \cap U$. Since A is $k_1 - open$, it is $k_1 - gs - open$ in X. Since $A \subseteq A$ and A is $(k_1, k_2) - g^*b\omega$ - closed in X, $k_{2b}(A) \subseteq A$. Since $B \subseteq A$, $k_{2b}(B) \subseteq k_{2b}(A)$. Hence $k_{2b}(B) \subseteq A \cap k_{2b}(B) = k_{2b}(B)$. Hence $k_{2b}(B) = k_{2b}(B)$ = $k_{2b}(B)$. Hence $k_{2b}(B) \subseteq A \cap U \subseteq U$. Thus B is $(k_1, k_2) - g^*b\omega$ - closed in X.

IV (k_1, k_2) - g*b ω - OPEN SETS

In this section, $(k_1, k_2) - g^*b\omega$ - open sets in biČech closure space is introduced and their properties are studied.

Definition 4.1 A set A of a biČechclosure space (X, τ_1, τ_2) is called (**k**₁, **k**₂) - *generalized star b omega open* (briefly, (**k**₁, **k**₂) - g*b ω - open) if its complement is (**k**₁, **k**₂) - g*b ω - closed.

Theorem 4.2 A subset A of a biČechclosure space X is $(k_1, k_2) - g^*b\omega$ - open if and only if $F \subseteq int_{k_{2b}}(A)$ whenever $F \subseteq A$ and F is $k_1 - gs$ - closed in X.

Proof. Suppose that A is $(k_1, k_2) - g^*b\omega$ - open. Let F \subseteq A and F be $k_1 - gs$ - closed. Then $A^c \subseteq F^c$ and F^c is $k_1 - gs$ - open. Since A^c is $(k_1, k_2) - g^*b\omega$ - closed, $k_{2b}(A^c) \subseteq F^c$. Since $k_{2b}(A^c) = [int_{k_{2b}}(A)]^c$, $[int_{k_{2b}}(A)]^c \subseteq F^c$. Hence $F \subseteq int_{k_{2b}}(A)$.

Conversely, suppose that $F \subseteq int_{k_{2b}}(A)$ whenever $F \subseteq A$ and F is $k_1 - gs$ - closed in X. Let Ube $k_1 - gs$ - open in X and $A^c \subseteq U$. Then U^c is $k_1 - gs$ - closed and $U^c \subseteq A$. Hence by assumption $U^c \subseteq$ $int_{k_{2b}}(A)$. That is $k_{2b}(A^c) \subseteq U$. Therefore A^c is $(k_1, k_2) - g^*b\omega$ - open.

Theorem 4.3 If a subset A is $(k_1, k_2) - g^*b\omega$ - closed in X then $k_{2b}(A) \setminus A$ is $(k_1, k_2) - g^*b\omega$ - open. **Proof.** Suppose that A is $(k_1, k_2) - g^*b\omega$ - closed in X. Let $F \subseteq k_{2b}(A) \setminus A$ and F be $k_1 - gs$ - closed. Since A is $(k_1, k_2) - g^*b\omega$ - closed, $k_{2b}(A) \setminus A$ does not contain nonempty k_1 - gs - closed sets (by Theorem 3.11). Hence $F = \varphi$. Thus $F \subseteq int_{k_{2b}}[k_{2b}(A) \setminus A]$. Hence $k_{2b}(A) \setminus A$ is $(k_1, k_2) - g^*b\omega$ - open.

Theorem 4.4 If a set A is $(k_1, k_2) - g^*b\omega$ - open in X then G = X whenever G is $k_1 - gs$ - open and $int_{k_{2b}}(A) \cup A^c \subseteq G$.

Proof. Suppose that A is $(k_1, k_2) - g^*b\omega$ - open in X, G is $k_1 - gs$ - open and $int_{k_{2b}}(A) \cup A^c \subseteq G$. Then $G^c \subseteq \{int_{k_{2b}}(A) \cup A^c\}^c = k_{2b}(A^c) \setminus A^c$. Since A^c is $(k_1, k_2) - g^*b\omega$ - closed, $k_{2b}(A^c) \setminus A^c$ contains no nonempty $k_1 - gs$ - closed set in X (by Theorem 3.11). Therefore $G^c = \varphi$. Hence G = X.

Theorem 4.5 If A and B are two $(k_1, k_2) - g^*b\omega$ - open sets and so is A \cup B.

Proof. Let A and B be two $(k_1, k_2) - g^*b\omega$ - open sets. Let U be k_1 - gs - open in X. Let $(A^c \cap B^c) \subseteq U$. Since $(A^c \cap B^c) \subseteq U$, we have $A^c \subseteq U$ and $B^c \subseteq U$. Then $k_{2b}(A^c) \subseteq U$ and $k_{2b}(B^c) \subseteq U$ implies $k_{2b}(A^c) \cap k_{2b}(B) \subseteq U$. Hence $k_{2b}(A^c \cap B^c) \subseteq U$. Thus $A \cup B$ is $(k_1, k_2) - g^*b\omega$ - open set.

V REFERENCE

[1] C. Boonpok, Generalized Biclosed Sets in BiCech Closure Spaces, Int. Journal of Math. Analysis, Vol. 4, no. 2, 89 - 97, 2010.

[2] E. Čech, Topological Spaces, Inter Science Publishers, John Wiley and Sons, New York (1966).

[3] K. Chandrasekha Rao and R. Gowri, On closure spaces, Varahamihir Jorunal of Mathematical Science, Vol. 5, No.2, 375 - 378, 2005.

[4] K. Chandrasekha Rao and R. Gowri, On biclosure spaces, Bulletin of pure and applied sciences, Vol 25E, 171 - 175, 2006.

[5] K. Chandrasekha Rao and R. Gowri, Regular generalised closed sets in biclosure space, Jr. of Institute of Mathematics and computer Science, (Math. Ser.), Vol.19, No.3, 283-286, 2006.

[6] M.M. Day, Convergence, closure and neighbourhoods, Duke Math. J., H: 181-199, 1944.

[7] S. Gnilka, On extended topologies I ; Closure operators, Ann. Soc. Math. Pol. Ser. I, Commentat, Math., 34: 81 - 94, 1994.

[8] S. Gnilka, On extended topologies II ; Closure operators, Ann. Soc. Math. Pol. Ser. I, Commentat, Math., 35: 147 - 162, 1995.

[9] P.C. Hammer, Extended topology; Set Valued set functions, Nieurw Ach. Wisk, III, 10:55-77, 1962.

[10] P.C. Hammer, Extended topology; continuity I; Portug Math., 25:77-93,1964.