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I INTRODUCTION 

      𝐶 ech closure spaces were introduced by 𝐶 ech [2]. 

In 𝐶 ech’s approach the operator satisfies idempotent 

condition among Kuratowski axioms.  This condition 

need not hold for every set A of X.  When this 

condition is also true, the operator becomes 

topological closure operator.  Thus the concept of 

closure space is the generalisation of a topological 

space. Closure functions that are more general than 

the topological ones have been studied already by 

Day [6].  A thorough discussion on closure functions 

is due to Hammer, see eg. [9, 10] and more recently 

Gnilka [8, 9].  The notion of bitopological space were 

introduced by J.C. Kelly [7].  Such spaces are 

equipped with two arbitrary topologies. Furthermore, 

Kelly extended some of the standard results of 

separation axioms in a topological space to a 

bitopological space.  In this paper we introduce the 

g*b𝝎 - closed sets in bi𝐶 ech closure spaces. 

II PRELIMINARIES 

Definition 2.1 [4] Two functions k1 and k2 from 

power set X to itself are called bi 𝐶 ech closure 

operators (simply biclosure operator) for X if they 

satisfies the following properties: 

i. k1(φ) = φ and k2(φ) = φ 

ii. A ⊂ k1(A) and A ⊂ k2(A), for any set A ⊂ X 

iii. k1(A ∪  B) = k1(A) ∪  k1(B) and k2(A ∪  B) = k2(A) 

∪  k2(B) for any A, B ⊂ X 

     (X, k1, k2) is called bi𝐶 ech closure space. 

Example 2.2 Let X = {a, b, c} and let k1 and k2 be 

defined as: 

k1({a})     = {a}   k2({a})     = {a} 

k1({b})     = k1({c})   k2({b})     = {b, c} 

    = k1({b, c})   k2({c})      = k2({a, c}) 

    = {b, c}       = {a, c} 

k1({a, b}) = k1({a, c})  k2({a, b}) = k2({b, c}) 

    = k1({X})       =k2({X}) 

    = X        = X 

k1(φ)         =  φ   k2(φ)         =  φ 

Now (X, k1, k2) is bi𝐶 ech closure space. 

Definition 2.3 [1] A subset A of a bi𝐶 ech closure 

space (X, k1, k2) is called biclosed if k1A = A = k2A 

Definition 2.4 [3] A subset A in a bi𝐶 ech closure 

space (X, k1, k2) is said to be 

i. ki - semi open if A ⊆ ki [intki(A)], i = 1, 2. 

ii. ki - semi closed if intki [ki(A)] ⊆ A, i = 1, 2. 
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The intersection of all ki - semi - closed 

subsets of X containing A is called the ki - semi - 

closure of A and is denoted by kis (A).   

III (k1, k2) - g*b𝝎 - CLOSED SETS 

  In this section, the concept of (k1, k2) - g*b𝜔 

- closed sets in bi𝐶 ech closure spaces is defined and 

some of their characterizations and properties are 

studied. 

Definition 3.1 A subset A in a bi𝐶 ech closure space 

(X, k1, k2) is said to be   

i. ki - b - closed if  

(intki (ki (A))) ∪ (ki (intki (A)))  A. 

 

ii. ki - b - open if  

A  (ki (intki (A))) ∩ (intki (ki (A))). 

The intersection of all ki - b - closed subsets 

of X containing A is called the ki - b - closure of A 

and is denoted by kib (A).  The union of all ki - b - 

open subsets of X contained in A is called the ki - b - 

interior of A and is denoted by 𝑖𝑛𝑡𝑘𝑖𝑏
 (A). 

Definition 3.2 A set A of a bi𝐶 ech closure space  

(X, k1, k2) is said to be (k1, k2) - generalized semi 

closed (briefly, (k1, k2) - gs - closed) if k2s(A)  U 

whenever A  U and U is k1 - open in X. 

Definition 3.3 A set A of a bi𝐶 ech closure space  

(X, k1, k2) is said to be (k1, k2) - generalized star b 

omega closed (briefly, (k1, k2) - g*b𝜔  - closed) if 

k2b(A)  U whenever A  U and U is k1 - gs - open 

in X. 

Example 3.4 In example 2.2, {a}  {a, b} is a  

(k1, k2) - g*b𝜔 - closed. 

Remark 3.5 By setting k1 = k2 in definition 3.3, an 

(k1, k2) - g*b𝜔 - closed set is a c ech g*b𝜔 - closed 

set . 

Theorem 3.6 Every k2 - closed set in X is (k1, k2) - 

g*b𝜔 - closed. 

Proof. Let A be k2 - closed in X such that A  U, 

where U is k2 - gs - open.  Since A is k2 - closed, 

k2(A) = A  U.  But k2b(A)  k2(A).  Therefore 

k2b(A)  U.  Hence A is a (k1, k2) - g*b𝜔 - closed set 

in X. 

The converse of the above theorem is not 

true in general as can be seen from the following 

example. 

Example 3.7 In example 2.2, {c} is a (k1, k2) - g*b𝜔 

- closed but not k2 - closed. 

Theorem 3.8 Every k2 - semi closed set in X is  

(k1, k2) - g*b𝜔 - closed. 

Proof. Let A be k2 - semi closed in X such that A  

U, where U is k2 - gs - open.  Since A is k2 - semi 

closed, k2s(A) = A  U.  But k2b(A)  k2s(A).  

Therefore k2b(A)  U.  Hence A is a (k1, k2) - g*b𝜔 - 

closed set in X. 

The converse of the above theorem is not 

true in general as can be seen from the following 

example. 

Example 3.9 In example 2.2, {c} is a (k1, k2) - g*b𝜔 

- closed set but not k2 - semi closed. 

Theorem 3.10 If A and B are two (k1, k2) - g*b𝜔 - 

closed sets and so is A ∩ B. 

Proof.  Let A and B be two (k1, k2) - g*b𝜔 - closed 

sets.  Let U be k1- gs - closed in X.  Let (A ∩ B)  U.  

Since (A ∩  B)  U, A  U and B  U.  Then  

k2b(A)  U and k2b(B)  U implies k2b(A) ∩ k2b(B)  

U.  Hence k2b(A ∩ B)  U.  Thus A ∩ B is a (k1, k2) - 

g*b𝜔 - closed set. 

Theorem 3.11 If a subset A of a  bi𝐶 ech closure 

space X is (k1, k2) - g*b𝜔 - closed then k2b(A) \ A 

contains no nonempty k1- gs - closed set. 

Proof. Let A be a (k1, k2) - g*b𝜔 - closed set and F 

be a k1 - gs - closed set such that F  k2b(A) \ A.  

Therefore A  F
c
 and F  k2b(A).  Since F is k1 - gs -

closed, F
c  

is k1 - gs - open and A is (k1, k2) - g*b𝜔 - 

closed, k2b(A)    F
c
.  Thus F  [k2b(A)]

c
 =  

X \ [k2b(A)].  Hence F   [k2b(A)] ∩ [X \ [k2b(A)]] = 
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φ.  Therefore F = φ.  Hence k2b(A) \ A contains no 

nonempty k1- gs - closed set. 

Theorem 3.12 Let A be an (k1, k2) - g*b𝜔 - closed 

set in X.  Then A is k2 - b - closed if and only if 

k2b(A) \ A is k1 - gs - closed in X. 

Proof. Suppose that A is (k1, k2) - g*b𝜔 - closed.  Let 

A be k2 - b - closed.  Then k2b(A) = A.  Therefore 

k2b(A) \ A = φ is k1 - gs - closed in X. 

       Conversely, suppose that A is (k1, k2) - 

g*b𝜔 - closed and k2b(A) \ A is k1 - gs - closed. Since 

A is (k1, k2) - g*b𝜔 - closed, k2b(A) \ A  contains no 

nonempty k1 - gs - closed set (by Theorem 3.11).  

Since k2b(A) \ A is k1 - gs - closed, k2b(A) \ A = φ.  

Then k2b(A) = A.  Hence A is k2 - b - closed. 

Theorem 3.13 Let A and B be subsets of X such that 

A  B  k2b(A).  If A is (k1, k2) - g*b𝜔 - closed then 

B is (k1, k2) - g*b𝜔 - closed.  

Proof. Let A and B be subsets such that A  B  

k2b(A).  Suppose that A is (k1, k2) - g*b𝜔 - closed.  

Let B  U and U be k1 - gs - open in X.  Then A  U. 

Since A is (k1, k2) - g*b𝜔 - closed, k2b(A)  U.  Since 

B  k2b(A), k2b(B)  k2b[k2b(A)] = k2b(A)   U.  

Therefore B is (k1, k2) - g*b𝜔 - closed. 

Theorem 3.14 Let X be a bi𝐶 ech closure space.  If x 

∈  X then singleton {x} is either k1 - gs - closed or 

{x}
c
 is (k1, k2) - g*b𝜔 - closed set. 

Proof. Let X be a bi𝐶 ech closure space.  Let x ∈ X 

and suppose that {x} is not k1 - gs - closed.  Then  

X \ {x} is not k1 - gs -open.  Consequently, X is the 

only k1 - gs - open set containing the set  

X \ {x}.  Therefore X \ {x} is (k1, k2) - g*b𝜔  - 

closed.  

Theorem 3.15 Let B  A  X and suppose that B is 

(k1, k2) - g*b𝜔 - closed in X, then B is (k1, k2) - g*b𝜔 

- closed relative to A.  The converse is true if A is k1 

- open and (k1, k2) - g*b𝜔 - closed in X.   

Proof. Let B be (k1, k2) - g*b𝜔 - closed in X.  Let B 

 U and U be k1 - gs - open in A.  Since U is 𝜏𝑖  - gs - 

open in A, U = V ∩ A, where V is k1 - gs - open in X.  

Hence B  U  V.  Since B is (k1, k2) - g*b𝜔 - 

closed in X, k2b(B)  V.  Hence k2b(B) ∩ A  V ∩ A, 

which in turn implies that A ∩ k2b(B)  V ∩ A = U.  

Therefore B is (k1, k2) - g*b𝜔 - closed relative to A.    

Now to prove the converse, assume the 

given condition.  Let B  U and U be k1 - gs - open 

in X.  Then A ∩ U is k1 - gs - open in A.  Since  

B  A and B  U, B  A ∩ U.  Since B is (k1, k2) - 

g*b𝜔 - closed relative to A, A ∩ k2b(B)  A ∩ U.  

Since A is k1 - open, it is k1 - gs - open in X.   Since 

A  A and A is (k1, k2) - g*b𝜔 - closed in X, k2b(A) 

 A.  Since B  A, k2b(B)  k2b(A).  Hence k2b(B)  

A.  Therefore, k2b(B) ∩ A = k2b(B) ⇒ A ∩ k2b(B) = 

k2b(B).  Hence k2b(B)  A ∩ U  U.  Thus B is  

(k1, k2) - g*b𝜔 - closed in X.  

 IV (k1, k2) - g*b𝜔 - OPEN SETS 

 In this section, (k1, k2) - g*b𝜔 - open sets in 

bi𝐶 ech  closure space is introduced and their 

properties are studied. 

Definition 4.1 A set A of a bi𝐶 echclosure space (X, 

𝜏1, 𝜏2) is called (k1, k2) - generalized star b omega 

open (briefly, (k1, k2) - g*b 𝜔  - open) if its 

complement is (k1, k2) - g*b𝜔 - closed. 

Theorem 4.2 A subset A of a bi𝐶 echclosure space X 

is (k1, k2) - g*b𝜔 - open if and only if F   𝑖𝑛𝑡𝑘2𝑏
(A) 

whenever F   A and F is k1 - gs - closed in X. 

Proof. Suppose that A is (k1, k2) - g*b𝜔 - open. Let F 

  A and F be k1 - gs - closed.  Then A
c
   F

c
 and F

c
 

is k1 - gs - open.  Since A
c
 is (k1, k2) - g*b𝜔 - closed, 

k2b(A
c
)   F

c
.  Since k2b(A

c
) = [ 𝑖𝑛𝑡𝑘2𝑏

(A)]
c
, 

[𝑖𝑛𝑡𝑘2𝑏
(A)]

c 
  F

c
.  Hence F   𝑖𝑛𝑡𝑘2𝑏

(A). 

Conversely, suppose that F  𝑖𝑛𝑡𝑘2𝑏
(A) 

whenever F   A and F is k1 - gs - closed in X.  Let U 

be k1 - gs - open in X and A
c
   U.  Then U

c
 is k1 - gs 

- closed and U
c
   A.  Hence by assumption U

c  
  

𝑖𝑛𝑡𝑘2𝑏
(A).  That is k2b(A

c
)   U.  Therefore A

c
 is (k1, 

k2) - g*b𝜔 - closed.  Hence A is (k1, k2) - g*b𝜔 - 

open. 

Theorem 4.3 If a subset A is (k1, k2) - g*b𝜔 - closed 

in X then k2b(A) \ A is (k1, k2) - g*b𝜔 - open. 
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Proof. Suppose that A is (k1, k2) - g*b𝜔 - closed in 

X. Let F   k2b(A) \ A and F be k1 - gs - closed. Since 

A is (k1, k2) - g*b𝜔 - closed, k2b(A) \ A does not 

contain nonempty k1 - gs - closed sets (by Theorem 

3.11).  Hence F = φ.  Thus F   𝑖𝑛𝑡𝑘2𝑏
[k2b(A) \ A].  

Hence k2b(A) \ A is (k1, k2) - g*b𝜔 - open. 

Theorem 4.4 If a set A is (k1, k2) - g*b𝜔 - open in X 

then G = X whenever G is k1 - gs - open and 

𝑖𝑛𝑡𝑘2𝑏
(A) ∪ A

c
   G. 

Proof. Suppose that A is (k1, k2) - g*b𝜔 - open in X, 

G is k1 - gs - open and 𝑖𝑛𝑡𝑘2𝑏
(A) ∪ A

c
  G.  Then G

c 

 {𝑖𝑛𝑡𝑘2𝑏
(A) ∪ A

c
}

c
 = k2b(A

c
) \ A

c
.  Since A

c
 is (k1, 

k2) - g*b 𝜔  - closed, k2b(A
c
) \ A

c
 contains no 

nonempty k1 - gs - closed set in X (by Theorem 3.11).  

Therefore G
c
 = φ.  Hence G = X. 

Theorem 4.5 If A and B are two (k1, k2) - g*b𝜔 - 

open sets and so is A ∪ B. 

Proof.  Let A and B be two (k1, k2) - g*b𝜔 - open 

sets.  Let U be k1- gs - open in X.  Let (A
c
 ∩ B

c
)  U.  

Since (A
c
 ∩ B

c
)  U, we have A

c
  U and B

c
  U.  

Then k2b(A
c
)  U and k2b(B

c
)  U implies k2b(A

c
) ∩ 

k2b(B)  U.  Hence k2b(A
c
 ∩ B

c
)  U.  Thus A ∪ B is 

(k1, k2) - g*b𝜔 - open set. 
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