A Note on Fuzzy (Λ , δ)-Closed Sets

Vaishnavy V

Research Scholar, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

Abstract— The motive of this article is to introduce the notions of Fuzzy (Λ, δ) -closed set and Fuzzy (Λ, δ) -continuity in fuzzy topological spaces and to investigate some basic yet essential properties.

Keywords— fuzzy δ -closed sets, $F\Lambda_{\delta}$ -set, fuzzy (Λ, δ) -closed sets and fuzzy (Λ, δ) -continuity

I. INTRODUCTION

The classical paper of L. A. Zadeh[7] in the year 1965, comprises of the concepts of fuzzy sets and fuzzy set operations. Thereafter the paper of C. L. Chang[2] in 1968 paved the way for tremendous growth of the numerous fuzzy topological concepts.

K. K. Azad[1] introduced the concept of fuzzy regular open sets and fuzzy regular closed sets in fuzzy topological spaces. Z. Petricevic[4] introduced the concept of fuzzy δ -open sets and fuzzy δ -closed sets in fuzzy topological spaces. In 2004, D.N. Georgiou[3] presented the notion of (Λ , δ)-closed sets in general topology. Thereafter this notion grasped higher significance due its nature of being partially δ open and partially δ -closed. This work is an extension of (Λ , δ)-closed sets to fuzzy topology.

II. PREREQUISITES

Definition 2.1 : A fuzzy subset A of a fuzzy topological space (X, \mathcal{F}) is called

- (i) **fuzzy regular open**[1] if int(cl(A))=A.
- (ii) **fuzzy** δ -open[4] if $A = \bigvee_{i \in I} A_i$, where A_i is a fuzzy regular open set for each i in (X, \mathcal{F}).

Sivakamasundari K Professor, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

A fuzzy subset A of a fuzzy topological space (X, \mathcal{F}) is called fuzzy regular closed[1](resp. fuzzy δ -closed[4]) if **1**-A is fuzzy regular open(resp. fuzzy δ -open).

Let the family of all fuzzy regular open, fuzzy regular closed, fuzzy δ -open and fuzzy δ -closed sets be represented by FRO(X, \mathcal{F}), FRC(X, \mathcal{F}), F δ O(X, \mathcal{F}) and F δ C(X, \mathcal{F}) respectively.

Definition 2.2 :[4] The δ -closure of a fuzzy set A is the intersection of all fuzzy regular closed sets containing A(shortly, Cl $_{\delta}(A)$). A fuzzy point $y_t \in Cl_{\delta}(A)$ iff every fuzzy regular open set which is q-coincident with x_t is also q-coincident with A.

III. $F\Lambda_{\delta}$ -sets and FV_{δ} -sets

Definition 3.1 : A fuzzy subset $F\Lambda_{\delta}(A)$ of a fuzzy topological space (X, \mathcal{F}) is defined as

 $F\Lambda_{\delta}(A) = \bigwedge \{ \mathbf{D} \in F\delta O(\mathbf{X}, \ \boldsymbol{\mathcal{F}}) \mid A \leq \mathbf{D} \}.$

Definition 3.2 : A fuzzy subset A of a fuzzy topological space (X, \mathcal{F}) is called a $F\Lambda_{\delta}$ -set if $F\Lambda_{\delta}(A)=A$.

Theorem 3.3 : For fuzzy subsets A, B and A_i (i $\in I = [0,1]$) of a fuzzy topological space (X, \mathcal{F}), the following are true.

- (i) $A \leq F\Lambda_{\delta}(A)$.
- (ii) $F\Lambda_{\delta}(F\Lambda_{\delta}(A)) = F\Lambda_{\delta}(A).$
- (iii) If $A \leq B$ then $F\Lambda_{\delta}(A) \leq F\Lambda_{\delta}(B)$.
- (iv) $F\Lambda_{\delta}(\bigwedge_{i\in I} \{A_i\}) \leq \bigwedge_{i\in I} \{F\Lambda_{\delta}(A_i)\}.$
- $(v) \qquad F\Lambda_{\delta}(\bigvee_{i \in I} \{A_i\}) = \bigvee_{i \in I} \{F\Lambda_{\delta}(A_i)\}.$

Proof : (i), (ii) and (iii) follow from Definition 3.1.

(iv) Suppose that $x \notin \bigwedge \{F\Lambda_{\delta}(A_i)\}$ then there exists $i_0 \in I$ such that $x \notin F\Lambda_{\delta}(A_{i0})$. This implies that there exists a fuzzy δ -open set D such that $x \notin D$ and $A_{i0} \leq D$. Since \wedge i∈I $A_i \leq A_{i0} \leq D$ and $x \notin D$, we have х $\notin F\Lambda_{\delta}(\land \{A_i\}).$ (vi) From (i) and (iii), $A_i \leq F \Lambda_{\delta}(A_i) \leq F \Lambda_{\delta}(A_i)$ \bigvee A_i), for each i \in I. This implies \bigvee $i \in I$ $(F\Lambda_{\delta}(A_i)) \leq F\Lambda_{\delta}(\bigvee_{i \in I} A_i).$ Conversely, suppose that $x \notin \bigvee_{i \in I} (F\Lambda_{\delta}(A_i))$. Then $x \notin F\Lambda_{\delta}(A_i)$, for all $i \in I$. This implies that there exists $S_i \in F\delta O(X, \mathcal{F})$ such that $A_i \leq S_i$ and $x \notin S_i$, for all $i \in I$. Hence $x \notin F\Lambda_{\delta}(\lor \{A_i\})$. Thus $F\Lambda_{\delta}(\bigvee A_i\}) = \bigvee \{F\Lambda_{\delta}(A_i)\}.$

Remark : The following Example shows that the converse of (iv) in Theorem 3.3 is not true in general.

Example 3.4: Let $X = \{a, b\}$ and $\mathcal{F}=\{\{0, 1, (0.2_a, 0.5_b), (0.5_a, 0.8_b)\}$. Then $F\delta O(X, \mathcal{F}) = \{0, 1, (0.2, 0.5)\}$. Let $A_1 = (0.1, 0.6)$ and $A_2 = (0.3, 0.3)$. Then $A_1 \land A_2 = (0.1, 0.3)$. Also, $F\Lambda_{\delta}(A_1) = F\Lambda_{\delta}(A_2) = 1$ and $F\Lambda_{\delta}(A_1 \land A_2) = (0.2, 0.5)$ which implies $F\Lambda_{\delta}(A_1 \land A_2) \neq F\Lambda_{\delta}(A_1) \land F\Lambda_{\delta}(A_2)$.

(i) $F\Lambda_{\delta}(A)$ is a $F\Lambda_{\delta}$ -set.

(ii) If A is a fuzzy δ -open set, then A is a $F\Lambda_{\delta}$ -set.

Proof:

- (i) Follows from (ii) of Theorem 3.3.
- (ii) Follows from Definition 3.2.

Theorem 3.6 : In a fuzzy topological space (X, \mathcal{F}), the following are true.

- (i) Arbitrary Intersection of $F\Lambda_{\delta}$ -sets is a $F\Lambda_{\delta}$ -set.
- (ii) Arbitrary Union of $F\Lambda_{\delta}$ -sets is a $F\Lambda_{\delta}$ -set.

Proof:

(i) Let A_i , where $i \in I$ be $F\Lambda_{\delta}$ -sets.

$$\begin{split} & F\Lambda_{\delta}(\bigwedge A_{i}) \\ &= F\Lambda_{\delta}(A_{1} \land A_{2} \land \dots \land A_{n} \land \dots) \\ &\leq F\Lambda_{\delta}(A_{1}) \land F\Lambda_{\delta}(A_{2}) \\ & \land \dots \land F\Lambda_{\delta}(A_{n}) \land \dots \\ & (By \text{ Theorem 3.3 (iv)}) \\ &= A_{1} \land A_{2} \land \dots \land A_{n} \land \dots \\ & (Since \text{ each is a } F\Lambda_{\delta}\text{-set}) \end{split}$$

$$= \bigwedge_{i \in I} A_i$$

Also by Theorem 3.3(i),
$$\bigwedge_{i \in I} A_i \leq F \Lambda_{\delta}(\bigwedge_{i \in I} A_i).$$

Hence arbitrary intersection of $F \Lambda_{\delta}$ -sets is a $F \Lambda_{\delta}$ -set.

(ii) Follows directly from Theorem 3.3(v).

Definition 3.7 : A fuzzy subset $FV_{\delta}(A)$ of a fuzzy topological space (X, \mathcal{F}) is defined as

$$FV_{\delta}(A) = \lor \{C \in F\delta C(X, \mathcal{F}) \mid C$$

Definition 3.8 : A fuzzy subset A of a fuzzy topological space (X, \mathcal{F}) is called a FV_{δ} -set if $FV_{\delta}(A) = A$.

Theorem 3.9 : For fuzzy subsets A, B and A_i (i $\in I = [0,1]$) of a fuzzy topological space (X, \mathcal{F}), the following are true.

- (i) $FV_{\delta}(A) \leq A$.
- (ii) $FV_{\delta}(FV_{\delta}(A)) = FV_{\delta}(A).$
- (iii) If $A \le B$ then $FV_{\delta}(A) \le FV_{\delta}(B)$.
- (iv) $FV_{\delta}(\bigwedge_{i \in I} \{A_i\}) = \bigwedge_{i \in I} \{FV_{\delta}(A_i)\}.$

ISSN: 2231-5373

 $\leq A$.

(v)
$$FV_{\delta}(\bigvee_{i \in I} \{A_i\}) \ge \bigvee_{i \in I} \{FV_{\delta}(A_i)\}.$$

- (vi) If A is a fuzzy δ -closed set then A is a FV $_{\delta}$ -set.
- $(vii) \quad F\Lambda_{\delta}(\textbf{1-A}) = \textbf{1-} FV_{\delta}(A) \text{ and } \\ FV_{\delta}(\textbf{1-A}) = \textbf{1-} F\Lambda_{\delta}(A).$

Proof : (i) to (vi) Similar to Theorem 3.3 and Corollary 3.5.

(vii) 1-
$$FV_{\delta}(A)$$

= 1 - $\bigvee \{C \mid C \in F\delta C(X, \mathcal{F}) \text{ and } C \leq A\}$
= $\land \{1-C \mid 1-C \in F\delta O(X, \mathcal{F}) \text{ and}$
 $1-C \geq 1-A\}$
= $\land \{D \mid D \in F\delta O(X, \mathcal{F}) \text{ and}$
 $1-A \leq D\}$
= $F\Lambda_{\delta}(1-A).$

Similarly, we can prove the other equality.

Corollary 3.10 : $FV_{\delta}(A)$ is a FV_{δ} -set.

Proof : Follows from (ii) of Theorem 3.9.

Definition 3.11 : A map $f : (X, \mathcal{F}) \to (Y, \zeta)$ is called a **fuzzy** Λ_{δ} -continuous(briefly $F\Lambda_{\delta}$ -continuous) function if the inverse image of every fuzzy closed set in (Y, ζ) is a fuzzy Λ_{δ} -set in (X, \mathcal{F}) .

Theorem 3.12 : For a map $f : (X, \mathcal{F}) \to (Y, \zeta)$, the following are equivalent.

- (i) f is $F\Lambda_{\delta}$ -continuous;
- (ii) Inverse image of every fuzzy open set in (Y, ζ) is fuzzy V_{δ} -set in (X, \mathcal{F}) .

Proof : Follows from Theorem 3.9(vii).

IV. FUZZY (Λ, δ)-CLOSED SETS

Definition 4.1 : A fuzzy subset A of a fuzzy topological space (X, \mathcal{F}) is called a **fuzzy** (Λ, δ) -closed (briefly $F(\Lambda, \delta)$ -closed) set if $A = K \land L$, where K is a $F\Lambda_{\delta}$ -set and L is a fuzzy δ -closed set.

The family of all fuzzy (Λ, δ) -closed sets in (X, \mathcal{F}) is denoted by $F(\Lambda, \delta)C(X, \mathcal{F})$.

Theorem 4.2 : The following are equivalent for a fuzzy subset A of a fuzzy topological space (X, \mathcal{F}).

(i) A is
$$F(\Lambda, \delta)$$
-closed;

(ii)
$$A = K \land Cl_{\delta}(A)$$
, where K is a $F\Lambda_{\delta}$ -set;

(iii) $A = F\Lambda_{\delta}(A) \wedge Cl_{\delta}(A);$

(iv)
$$A = F\Lambda_{\delta}(A) \wedge L$$
, where L is a fuzzy δ -closed set.

Proof:

- (i) \Rightarrow (ii) Let $A = K \land L$, where K is a $F\Lambda_{\delta}$ -set and L is a fuzzy δ -closed set. Now, $A \leq L$ $\Rightarrow Cl_{\delta}(A) \leq L$. Aso, $A \leq K \land Cl_{\delta}(A) \leq K$ $\land L = A$. Therefore $A = K \land Cl_{\delta}(A)$.
- (ii) \Rightarrow (iii) Let $A = K \land Cl_{\delta}(A)$, where K is a $F\Lambda_{\delta}$ -set. Now, $A \leq K \Rightarrow F\Lambda_{\delta}(A) \leq F\Lambda_{\delta}(K) = K \Rightarrow F\Lambda_{\delta}(A) \leq K$. Therefore $A \leq F\Lambda_{\delta}(A) \land Cl_{\delta}(A) \leq K \land Cl_{\delta}(A) = A$. Hence $A = F\Lambda_{\delta}(A) \land Cl_{\delta}(A)$.
- (iii) \Rightarrow (iv) Let $A = F\Lambda_{\delta}(A) \land Cl_{\delta}(A)$ and put $Cl_{\delta}(A) = L$. Hence $A = F\Lambda_{\delta}(A) \land L$, where L is a fuzzy δ -closed set.
- (iv) \Rightarrow (i) Follows from Definition 4.1.

Theorem 4.3 : Every fuzzy δ-closed(resp. $F\Lambda_{\delta}$ -) set is a $F(\Lambda, \delta)$ -closed set but not conversely.

Proof: Follows from Definition 4.1 and the fact that **1** is $F(\Lambda, \delta)$ -closed(resp. fuzzy δ -closed).

Example 4.4 : Let $X = \{a, b\}$ and $\mathcal{F} = \{\{0, 1, (0.2_a, 0.5_b), (0.5_a, 0.8_b)\}$. Then $(0.2_a, 0.5_b)$ is $F(\Lambda, \delta)$ -closed but not fuzzy δ -closed and $(0.8_a, 0.5_b)$ is $F(\Lambda, \delta)$ -closed but not a $F\Lambda_{\delta}$ -set.

Theorem 4.5 : Every fuzzy δ -dense[6] set which is also $F(\Lambda, \delta)$ -closed is a $F\Lambda_{\delta}$ -set.

Proof : Let (X, \mathcal{F}) be a fuzzy topological space and A be a fuzzy δ -dense as well as $F(\Lambda, \delta)$ closed set in (X, τ) . Then by Theorem 4.2, $A = K \wedge Cl_{\delta}(A)$, where K is a $F\Lambda_{\delta}$ -set. Since A is fuzzy δ -dense, $Cl_{\delta}(A)=1[6]$ and hence A = K, where K is a $F\Lambda_{\delta}$ -set.

Theorem 4.6 : Let (X, \mathcal{F}) be a fuzzy topological spaces. If A is fuzzy open then cl(A) is $F(\Lambda, \delta)$ -closed.

Proof : If A is fuzzy open then cl(A) is fuzzy regular closed[5] and therefore fuzzy δ -closed. Further, the proof follows from Theorem 4.3.

Theorem 4.7 : Let (X, \mathcal{F}) be a fuzzy topological space. Then

- (i) Arbitrary intersection of F(Λ, δ)-closed sets is F(Λ, δ)-closed in (X, *F*).
- (ii) Arbitrary union of $F(\Lambda, \delta)$ -open sets is $F(\Lambda, \delta)$ -open in (X, \mathcal{F}) .

Proof:

(i) Let A_i be a $F(\Lambda, \delta)$ -closed set for each $i \in I$. Then $A_i = K_i \land L_i$, where K_i is a $F\Lambda_{\delta}$ -set and L_i is a fuzzy δ -closed set for each $i \in I$.

Now $\bigwedge_{i \in I} A_i = \bigwedge_{i \in I} (K_i \wedge L_i) = (\bigwedge_{i \in I} K_i) \wedge (\bigwedge_{i \in I} L_i)$. Since any intersection of $F\Lambda_{\delta}$ -sets is a $F\Lambda_{\delta}$ -set and fuzzy δ -closed sets is fuzzy δ -closed, $\bigwedge_{i \in I} A_i$ is a $F(\Lambda, \delta)$ -closed

set. (ii) Let A_i be a $F(\Lambda, \delta)$ -open set for each $i \in I$. Then $X \setminus A_i$ is a $F(\Lambda, \delta)$ -closed set for each $i \in I$. $X \setminus \bigvee_{i \in I} A_i = \bigwedge_{i \in I} (X \setminus A_i)$. Therefore by (i), $\bigvee_{i \in I} A_i$ is $F(\Lambda, \delta)$ -open.

Definition 4.8 : A fuzzy subset A of a fuzzy topological space (X, \mathcal{F}) is called a **fuzzy** (Λ, δ) -open (briefly $F(\Lambda, \delta)$ -open) set if $A = K \lor L$, where K is a FV_{δ} -set and L is a fuzzy δ -open set.

Equivalently, the complement of a fuzzy (Λ, δ) -closed set is called fuzzy (Λ, δ) -open.

The family of all fuzzy (Λ, δ) -open sets in (X, \mathcal{F}) is denoted by $F(\Lambda, \delta)O(X, \mathcal{F})$.

Theorem 4.9 : The following are equivalent for a fuzzy subset A of a fuzzy topological space (X, \mathcal{F}).

- (i) A is $F(\Lambda, \delta)$ -open;
- (ii) $A = K \lor int_{\delta}(A)$, where K is a FV_{δ}-set;
- (iii) $A = FV_{\delta}(A) \lor int_{\delta}(A);$
- (iv) $A = FV_{\delta}(A) \lor L$, where L is a fuzzy δ -open set.

Proof : Similar to Theorem 4.2.

Definition 4.10 : Fuzzy (A, \delta)-closure (briefly $F(\Lambda, \delta)cl(A)$) of a fuzzy subset A is defined as

 $F(\Lambda, \delta)cl(A) = \bigwedge \{ D \in F(\Lambda, \delta)C(X, \mathcal{F}) \}$ $A \le D \}.$

Theorem 4.11 : For fuzzy subsets A and B of a fuzzy topological space (X, \mathcal{F}), the following conditions are true.

 $\begin{array}{ll} (i) & A \leq F(\Lambda, \, \delta) cl(A). \\ (ii) & If \, A \leq B, \, then \\ & F(\Lambda, \, \delta) cl(A) \leq F(\Lambda, \, \delta) cl(B). \\ (iii) & F(\Lambda, \, \delta) cl(0) = 0 \, \, and \, F(\Lambda, \, \delta) cl(1) = 1. \\ (iv) & F(\Lambda, \, \delta) cl(A) \, is \, a \, fuzzy \, (\Lambda, \, \delta) - closed \, set. \\ (v) & A \, is \, fuzzy \, (\Lambda, \, \delta) - closed \, iff \\ & F(\Lambda, \, \delta) cl(A) = A. \end{array}$

Proof: Straight forward.

Definition 4.12 : A function f: $X \rightarrow Y$ is said to be **fuzzy** (Λ , δ)-continuous(briefly F(Λ , δ)-continuous) function if f⁻¹(B) is a F(Λ , δ)-closed in X for each fuzzy closed set[4] B in Y.

Theorem 4.13 : If a fuzzy function f: $X \rightarrow Y$ is said to be fuzzy (Λ, δ) -continuous then for each fuzzy set A in X, $f(F(\Lambda, \delta)cl(A)) \leq cl(f(A))$.

 $\begin{array}{lll} \textbf{Proof} : cl(f(A)) \text{ is fuzzy closed in } Y. & By \\ \text{hypothesis, } f^1(cl(f(A))) \text{ is } F(\Lambda, \, \delta)\text{-closed in } X. \\ \text{Now,} & f(A) \leq cl(f(A)) \Rightarrow A \leq f \\ {}^1(f(A)) \leq f^1(cl(f(A))) \Rightarrow & F(\Lambda, \, \delta)cl(A) \leq \\ F(\Lambda, \, \delta)cl(f^1(cl(f(A)))) = f^1(cl(f(A))) \Rightarrow f(F(\Lambda, \, \delta)cl(A)) \leq cl(f(A)). \end{array}$

Proposition 4.14 : Every fuzzy supercontinuous(resp. $F\Lambda_{\delta}$ -continuous) function is $F(\Lambda, \delta)$ -continuous but not conversely.

Proof : Follows from Theorem 4.3.

Example 27 : Let $X = Y = \{a, b\}$ and $\mathcal{F} = \zeta = \{\{0, 1, (0.2_a, 0.5_b), (0.5_a, 0.8_b)\}.$

Define $f: (X, \mathcal{F}) \to (Y, \zeta)$ as follows: $f(a, b) = \begin{cases} (a, b), & \text{if } a = 0.2 \text{ and } b = 0.5 \\ (b, a), & \text{otherwise.} \end{cases}$ Then $f^1\{(0.2_a, 0.5_b)\}=(0.2_a, 0.5_b)$ is $F(\Lambda, \delta)$ -open but not fuzzy δ -open. Hence f is $F(\Lambda, \delta)$ continuous but not fuzzy super-continuous.

Example 28 : Let $X = Y = \{a, b\}$ and $\mathcal{F} = \zeta = \{\{0, 1, (0.2_a, 0.5_b), (0.5_a, 0.8_b)\}.$

Define $f: (X, \mathcal{F}) \rightarrow (Y, \zeta)$ as follows:

$$f(a,b) = \begin{cases} (b,a), & \text{if } a = 0.5 \text{ and } b = 0.8 \\ 1, & \text{otherwise.} \end{cases}$$

Then $f^{1}\{(0.5_{a}, 0.8_{b})\}=(0.8_{a}, 0.5_{b})$ is $F(\Lambda, \delta)$ -open but not a $F\Lambda_{\delta}$ -set. Hence f is $F(\Lambda, \delta)$ -continuous but not $F\Lambda_{\delta}$ -continuous.

References

- Azad, K. K., On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1981), 14-32.
- [2] Chang, C. L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [3] Georgiou, D. N., Jafari, S. and Noiri, T., Properties of (Λ, δ) -closed sets in topological spaces, Bollettinodell'UnioneMatematicaItaliana, Serie 8, 7-B (2004), 745-756.
- [4] Petricevic, Z., On fuzzy semi-regularization, separation properties and mappings, Indian J. Pure Appl. Math., 22 (12) (1991), 971-982.
- [5] Seok Jong Lee and Sang Min Yun, Fuzzy δ-topology and compactness, Commun. Korean Math. Soc., 27 (2) (2012), 357-368.
- [6] Thangaraj, G.and Dinakaran, K., On somewhat fuzzy δ-continuous functions, Ann. Fuzzy Math. Inform., 10 (3) (2015), 433-446.
- [7] Zadeh, L. A., Fuzzy sets, Information and control, 8 (1965), 338-353.