
SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 101

An Emphasized Apriori Algorithm For Huge

Sequence Of Datasets

RaviKumar.V

1

Associate Professor

Dept. Of Information Technology

Tkrcet, Research Scholar, Jntuh

Telangana,India.

Dr.Purna chander Rao
2

Professor

Dept. Of Information Technology

Swami Vivekananda Institute Of Technology,Sec-Bad,Telangana,India

.

Abstract:

 In this paper, an Emphasized Apriori algorithm is

proposed based on the most popular Apriori

algorithm to overcome its drawbacks which are

nothing but time consumption and the memory space.

Since the Apriori algorithm scans the entire database

based on minimum support and minimum confidence,

it consumes more time and also more space. In this

approach, new candidate set was prepared by

considering the minimum support such that the total

number of items will be reduced intern reduces the

time taken and also memory space. This approach

also includes the concept of Frequent Pattern (FP)

growth to delete the items which are not frequent.

Finally, a FP tree is established based on the frequent

item sets such that the items which are not frequent

were delete intern to reduce the space consumption.

Keywords: Sequential Pattern Mining, Apriority,

Frequent Pattern, Item sets, Time Consumption.

1. Introduction

With the quick development of the Internet and

information, mining valuable and important learning

or data is a basic issue as of late. Contingent upon

particular applications [1], [2], the found learning can

be named affiliation manage mining [3],

characterization [4], bunching [5], and successive

example mining [6], [7] among others [8].

Consecutive example mining (SPM) concerns the

requested arrangement information, for example,

DNA successions, utilization of Web log, Web-click

streams, or the logs of system stream. It can likewise

be utilized to anticipate the obtained practices of the

clients in crate examination. For instance, a client

purchases a few socks in one exchange at shopping

center, he or she will get a few shoes in a later

exchange. In prior, Agrawal et al. proposed the

AprioriAll calculation [6] to produce and-test

contender for mining the successive examples from a

static database. Pei et al. planned the PrefixSpan

calculation to effectively mine the successive

examples in view of the projection component [9]. A

grouping database is recursively anticipated into a

few littler arrangements of anticipated database to

accelerate the calculations for mining consecutive

examples. Zaki et al. proposed a SPADE calculation

to quick mine the successive examples [10]. The

SPADE calculation uses the combinational properties

in view of the effective grid seek methods with join

operations. In view of SPADE calculation, the

consecutive examples can be determined with three

database filters. Numerous calculations have been

proposed to mine the consecutive examples, however

the greater part of them are performed to handle the

static database. At the point when the arrangements

are changed whether succession inclusion [11] or

erasure [12] in the first database, the found

consecutive examples may get to be invalid or new

successive examples may emerge. A natural approach

to overhaul the successive examples is to re-handle

the redesigned database in cluster mode, which is

wasteful in certifiable applications. To handle the

dynamic database with succession inclusion, Lin et

al. proposed a FASTUP calculation [13] to

incrementally keep up and overhaul the found

successive examples with arrangement addition. The

first database is still, nonetheless, required to be

rescanned if the found successive example is

expansive in the additional groupings yet little in the

first database in view of the FASTUP idea. Hong et

al. at that point amplified the pre-expansive idea of

affiliation lead mining to separately keep up and

overhaul the found consecutive examples with

SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 102

succession inclusion [14] and arrangement erasure

[15] in a level-wise manner, which requires more

calculations of numerous database rescans. Lin

initially planned a quick redesigned consecutive

example (FUSP)- tree and built up the calculations

for productively taking care of an incremental

database with grouping inclusion [16]. The FUSP tree

is implicit progress before the arrangements are

embedded into the first database. Two sections with

four cases are then separated in light of the FASTUP

idea to keep up and overhaul the FUSP tree for later

mining process. Lin et al. additionally proposed the

support calculation for grouping cancellation [17].

The first database is, be that as it may, required to be

rescanned in the event that it is important to keep up a

succession which is little in the first database yet

substantial in the embedded groupings with

arrangement inclusion or a succession is little both in

the first database and in the erased successions with

grouping erasure. In this paper, an Enhanced

Apriority approach is proposed to diminish the time

utilization and memory space in consecutive example

mining framework. The proposed approach depends

on the most well known Apriority algorithm which is

having an issue of exercise in futility and parcel of

memory utilization. The improved Apriority

algorithm beats these two issues by erasing the

itemsets which are not visit. Whatever is left of paper

is sorted out as takes after: area II depicts the points

of interest of Apriority algorithm. Area III depicts the

points of interest of the proposed Enhanced Apriority

algorithm. The test results are represented in area IV

lastly the conclusions are given in segment V.

2. Apriori Algorithm

Agrawal and Srikant [6] firstly proposed Apriority

algorithm . This calculation depends on Apriori

property which expresses each sub (k-1)- Itemset of

regular k-Itemset must be visit. Two primary process

are executed in Apriority algorithm : one is applicant

era handle, in which the bolster tally of the comparing

sensor things is computed by checking value-based

database and second is substantial itemset era, which

is produced by pruning those hopeful Itemsets which

has a bolster number not as much as least limit. These

procedures are iteratively rehashed until competitor

Itemsets or huge Itemsets gets to be unfilled as in

illustration appeared in Fig 1. Unique database is

filtered first time for the competitor set, comprises of

one sensor thing and there support has checked, then

these 1-Itemset applicants are pruned by just

evacuating those things that has a thing tally not as

much as client determined edge (in above case

threshold=30%). In second pass database is filtered

again to create 2-Itemset hopefuls comprise of two

things, on the other hand pruned to delivered

expansive 2-Itemset utilizing apriori property. As per

apriori property each sub 1-Itemset of 2 regular

Itemsets must be visit. This procedure closes as in

fourth sweep of database 4-Itemset hopeful will be

pruned and huge itemset will be unfilled.

 (a) (b)

(c)

(d) (e)

(f) (g)

Figure.1 (a) original database, (b) candidate-1, (c)

large-1 items, (d) candidate-2, (e) large-2 items, (f)

candidate-3, (g) largest-3 items

There are two constraints of this calculation: one is

unpredictable hopeful itemset era handle which

expends substantial memory and tremendous

execution time and second issue is over the top

database checks for competitor era. By and large

there are two approaches to beat these constraints:

one route is to investigate distinctive pruning and

separating systems to make competitor Itemset littler.

Second approach is either supplant unique database

with subset of exchange in light of huge incessant

Itemset or minimizes the quantity of sweeps over the

database.

3. Enhanced Apriori Algorithm

Despite being straightforward and clear, the Apriority

algorithm experiences some shortcoming.

Squandering of expensive time for checking all out

datasets and the lower least support or bigger itemsets

is the principle confinement couch priori calculation.

Since, it has exponential multifaceted nature; it

devours parcel of memory furthermore reaction time.

For instance, if the quantity of exchanges is 100, then

the aggregate number of itemsets will be 2100

furthermore it does mining twice. This issue can be

illuminated by decreasing the quantity of itemsets by

continuous itemsets mining (FIM) assistant

diminishes the time required for mining. Be that as it

may, the fundamental impediment with FIM is the

utilization of a great deal of space and gets to be

wasteful for ongoing itemset applications.

In this paper, another example mining methodology is

proposed to beat the issue of ordinary Apriori and

FIM calculations. We should characterize a few

definitions, for example, be the exchange set, be the

arrangement of things in every single exchange and

k-thing set is additionally an itemset with the end

SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 103

goal that it is a subset to thing set I, . Here another

parameter s characterized as the support or the

recurrence of event of thing, characterized as ,

applicant itemset of size k and be the successive

itemset of size k. We first output every one of the

exchanges to produce F1 which contains the things,

their bolster check and Transaction IDs where the

things are found. And afterward we utilize F1 as a

partner to create F2, F3 … ., Fk. When we need to

produce C2, we make a self-join F1 * F1 to develop

2-itemset C (x, y), where x and y are the things of C2.

Before filtering all the exchange records to check the

bolster tally of every competitor, utilize F1 to get the

exchange IDs of the base bolster tally amongst x and

y, and in this way examine for C2 just in these

particular exchanges. A similar thing applies for C3,

build 3-itemset C(x, y, z), where x, y and z are the

things of C3 and utilize F1 to get the exchange IDs of

the base bolster tally between x, y and z and after that

output for C3 just in these particular exchanges and

rehash these means until no new continuous itemsets

are distinguished. Presently to decrease the memory

space when extensive exchanges are there a

straightforward administer can be taken after: Let n

be the quantity of hubs in the FP-tree and k be the

shade of the groups of the exchanges in the database.

Presently, absolutely n > k. If so then k is at most n -

1. Assume we have 1000 exchanges then k will be at

generally 999. There are such a large number of

conceivable outcomes of hues and every one of the

hues will be picked by us. All things considered,

unmistakably that prompts to a terrible decision.

Presently, let n>= k as this can likewise be

conceivable then k will be at most n yet at the same

time the run applies as n can't be not as much as k

since then at every level hubs will have a similar

shading. It must be same if the tree is completely

needy. Since it consumes exponential memory room,

the potential outcomes of hues getting produced

ought to be minimized. This should be possible by

utilizing another scientific recipe for looking at the

quantity of hubs and hues i.e. n > 2k. For this

situation hues will be minimized definitely eg; if n =

1000 now then k will be around log2(1000) = 10. The

base 2 connotes that the bunch is getting apportioned

into 2 sections and selecting implies out of the two

just 1 is getting chosen. This can be any number of

segments relying upon client's decision. Client will

have the decision of choosing the base. The

estimation of the base is equivalent to the quantity of

allotments of the group. Utilizing this approach less

memory space is devoured at once and things can be

mines in a lesser measure of time. Consequently, it

fills the need.

Give us a chance to accept an extensive grocery store

tracks deals information by stock-putting away unit

(SSU) for every thing, for example, "Sugar", "Dal",

"Drain", "Wheat", "Oil", "Rice" is distinguished by a

numerical SSU. The general store has a database of

exchanges where every exchange is an arrangement

of SSUs that were purchased together. Give the

database of exchanges a chance to comprise of taking

after itemsets: The exchange set as appeared in Table

1. At first, filter all exchanges to get visit 1-itemset I1

which contains the things and their bolster tally and

the exchanges ids that contain these things, and after

that dispense with the competitors that are not visit or

the thing having bolster not exactly the base support

as appeared in table 2.

Table 1. The Transactions

Transactions Item sets

T1 Rice, oil

T2 Rice, wheat, sugar

T3 Milk, dal

T4 Dal, sugar, oil

T5 Wheat, rice

T6 Rice, dal, sugar, milk

T7 Rice, dal, sugar, milk, oil

Table 2. The candidate 1- itemset

Items support

Rice 5

Oil 3

Wheat 2

Dal 4

Sugar 4

milk 3

The regular 1-itemset is appeared in table 3. The sets

which are in intense will be erased in regular 2-

itemset as appeared in table 4. The sets which are in

strong will be erased in successive 3-itemsets as

appeared in table 5.

Table 3. The frequent 1- itemset

Items support Transaction IDs (T_ID)

Rice 5 T1, T2, T5, T6, T7

Oil 3 T1, T4, T7

Wheat 2 T2, T5

Dal 4 T3, T4, T6, T7

Sugar 4 T2, T4, T6, T7

milk 3 T3, T6, T7

Table 4. The frequent 2- itemset

Items support Min Found in

Rice, oil 2 Oil T1, T7

Rice, Dal 2 Dal T6, T7

Rice, Sugar 3 Sugar T2, T6, T7

Rice, Milk 2 Milk T6, T7

Oil, Dal 2 Dal T4, T7

Oil, Sugar 2 Oil T4, T7

Oil, Milk 1 Oil T7

Dal, Sugar 3 Dal T4, T6, T7

Dal, Milk 3 Dal T3, T6, T7

Sugar, Milk 2 Milk T6, T7

Table 5. The frequent 3- itemset

SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 104

Items support Min Found in

Rice, Sugar, Dal 2 Dal T6, T7

Rice, Sugar, Milk 2 Milk T6, T7

Dal, Sugar, Milk 2 Dal T6, T7

The following stride is to produce competitor 2-

itemset from L1 split each itemset in 2-itemset into

two components then utilize l1 table to decide the

exchanges where you can discover the itemset in,

instead of looking for them in all exchanges. For

instance, we should take the primary thing in table.4

(Rice, Oil), in the first Apriori we check every one of

the 7 exchanges to discover the thing (Rice, Oil);

however in our proposed enhanced calculation we

will part the thing (Rice, Oil), into Rice and Oil and

get the base support between them utilizing L1 has

the littlest least support. After that we hunt down

itemset (Rice, Oil) just in the exchanges T1 the base

certainty, and afterward create all applicant affiliation

rules. In the past case, on the off chance that we tally

the quantity of examined exchanges to get (1, 2, 3)-

itemset utilizing the first Apriori and our enhanced

Apriori, we will watch the undeniable distinction

between number of checked exchanges with our

enhanced Apriori and the first Apriori. From the table

6, number of exchanges in1-itemset is the same in

both of sides, and at whatever point the k of k-itemset

increment, the crevice between our enhanced Apriori

and the first Apriori increment from perspective of

time expended, and thus this will decrease the time

devoured to create applicant bolster tally. To get

bolster mean each itemset, here Oil, and T7. For a

given regular itemset LK, T4, discover all non-

discharge subsets that fulfill the base certainty, and

afterward produce all applicant affiliation rules. In the

past case, on the off chance that we tally the quantity

of examined exchanges to get (1, 2, 3)- itemset

utilizing the first Apriori and our enhanced Apriori,

we will watch the conspicuous contrast between

number of checked exchanges with our enhanced

Apriori and the first Apriori. From the table 6,

number of exchanges in1-itemset is the same in both

of sides, and at whatever point the k of k-itemset

increment, the hole between our enhanced Apriori

and the first Apriori increment from perspective of

time devoured, and consequently this will lessen the

time expended to produce competitor bolster check.

Figure.2. FP-tree of the above illustrated Example

The last yield of the FP-Tree is as appeared in

Figure.2. Also, the base bolster tally is 3. Presently

locate the incessant examples from the FP-Tree. It's

minor. The things of the database and their recurrence

of events are appeared in Table:2 for everything.

Above all else, we have to organize all the itemsets as

indicated by their recurrence of events and afterward

we will see everything one by one from base to beat.

The things can be recorded as: Then we see Milk. To

begin with we have to locate the contingent example

base for Milk:3. This is because of the recurrence of

event of Milk. Presently go to Graph 1 and check the

Milks. There are 3 Milks and one event for each.

Presently cross base to best and get the branches

which have Milks with the event of Milk. We got 3

branches and they are RDSO: 1, D: 1, RDS: 1. To

guarantee that you accurately got every one of the

events of Milk in FP-Tree include events of every

branch and contrast and the events recorded

previously. For Milk we get 1+1+1 = 3 so it is right.

At that point, consider Oil. What's more, along these

lines the accuracy will be guaranteed for residual

things. By doing this for all things we can erase all

different branches aside from that and just that branch

will stay in the FP-Tree which we can draw again for

Milk and similarly for every single other thing.

4. Experimental Analysis

The performance evaluation of proposed approach is

examined by applying on various datasets. For every

itemset, the performance was measured by measuring

the time taken for every transaction and the reduced

amount of time at every transaction, the execution

time will vary with number of transactions. As the

number of transaction increases, the time taken for

scanning also increases. Initially, the time taken for

execution is evaluated for all transaction and the one

transaction is considered for evaluation with varying

minimum support. The obtained results are

summarized as follows:

T1 T2 T3 T4 T5
0

5

10

15

20

25

R
u
n
n
in

g
 T

im
e
(s

)

Transactions

Apriori[5]

EApriori

Figure.3. Running time for all transactions

Figure.3. shows the comparative analysis of the

proposed approach with earlier Apriori algorithm

with respect to the time taken for execution. The

running time varies from transaction to transaction.

As the number of transactions increases, the time

required for execution also increases. From the above

figure, it can be observed that the running time for

SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 105

proposed approach is less compared to Apriori

algorithm.

0.02 0.04 0.06 0.08 0.10
0

0.5

1

1.5

2

2.5

3

3.5

4
R

u
n
n
in

g
 T

im
e
(s

)

Minimum Support

Apriori[5]

EApriori

Figure.4. Running time variations w.r.t minimum

support

Figure.4 shows the time taken for execution with

respect to minimum support. As the minimum

support increase, the time taken for execution will be

decreased. The above figure compares the Apriori

with the proposed approach with respect to execution

time for varying minimum support. From the above

figure, it can be observed that for the proposed

approach, the time taken for execution at each and

every minimum support is less compared to Apriori.

500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

45

50

Number of transactions

T
im

e
(s

)

Apriori[5]

EApriori

Figure.5. Time consuming comparison for different

groups of transactions.

Figure.5 describes the details of the time taken for

execution with varying number of transaction. The

number of transactions is varied from 500 to 2500

and the respective time consumption results for both

the Apriori and the proposed EApriori are shown in

figure.5. Since the proposed approach considers the

frequent itemset as one more parameter to perform

mining, the time taken by EApriori must be less when

compare to Apriori. In the above figure, the time

taken is increasing with number of transaction, but

the increment is less for EApriori compared to

Apriori.

10 50 100 150 200
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

o
f

N
o
d
e
s

Dataset Size

Apriori[5]

EApriori

Figure.6. Number of nodes of tree for varying data

size

Figure.6 describes the number of node obtained for

varying data side such that the number of itemsets.

Generally, the dataset size increases, the number of

nodes also increases. From the above figure, the

proposed approach almost approaches the earlier

approach.

0 20 40 60 80 100 120 140 160 180 200
0

1000

2000

3000

4000

5000

6000

7000

Dataset Size

R
u
n
ti
m

e
(m

s
)

Apriori[5]

EApriori

Figure.7. Runtime (ms) variations with varying

dataset size

The runtime generally increases with an increase of

dataset size. The above figure illustrates the

variations of runtime in milliseconds for a varying

dataset size. Form the above figure, it can be

observed that the proposed approach has less

increment in the runtime compared to earlier

approach.

5. Conclusion

In this paper, a new approach was proposed for

sequential pattern mining based on the earlier Apriori

algorithm. This approach successfully reduces the

memory space and also reduces the time required for

execution even for large datasets. The enhancement if

the proposed approach can be observed when there is

an increment in the k itemsets. The time consumed to

generate candidate support count in our enhanced

Apriori is less than the time consumed in the original

Apriori. The results also reveal the efficiency of

proposed approach in the view of time consumption.

6. References

[1] R. Agrawal, T. Imielinski, and A. Swami,

``Database mining: A performance perspective,''

IEEE Trans. Knowl. Data Eng., vol. 5, no. 6, pp.

914_925, Dec. 1993

[2] M.-S. Chen, J. Han, and P. S. Yu, ``Data mining:

An overview from a database perspective,'' IEEE

Trans. Knowl. Data Eng., vol. 8, no. 6, pp.

866_883, Dec. 1996.

[3] R. Agrawal and R. Srikant, ``Fast algorithms for

mining association rules in large databases,'' in

Proc. Int. Conf. Very Large Data Bases, 1994,

pp. 487_499.

SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017

ISSN: 2348 – 8387 www.internationaljournalssrg.org Page 106

[4] S. B. Kotsiantis, ``Supervised machine learning:

A review of classi_cation techniques,'' in Proc.

Conf. Emerg. Artif. Intell. Appl. Comput. Eng.,

Real Word AI Syst. Appl. eHealth, HCI, Inf. Retr.

Pervasive Technol., 2007, pp. 3_24.

[5] P. Berkhin, ``A survey of clustering data mining

techniques,'' in Grouping Multidimensional Data.

Berlin, Germany: Springer-Verlag, 2006,pp.

25_71.

[6] R. Agrawal and R. Srikant, ``Mining sequential

patterns,'' in Proc. Int. Conf. Data Eng., 1995,

pp. 3_14.

[7] C. H. Mooney and J. F. Roddick, ``Sequential

pattern mining_Approaches and algorithms,''

ACMComput. Surveys, vol. 45, no. 2, pp. 1_39,

Feb. 2013.

[8] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ``An

effective tree structure for mining high utility

itemsets,'' Expert Syst. Appl., vol. 38, no. 6, pp.

7419_7424, Jun. 2011.

[9] J. Pei et al., ``Mining sequential patterns by

pattern-growth: The PrefixSpan approach,'' IEEE

Trans. Knowl. Data Eng., vol. 16, no. 11, pp.

1424_1440, Nov. 2004.

[10] M. J. Zaki, ``SPADE: An efficient algorithm for

mining frequent sequences,'' Mach. Learn., vol.

42, nos. 1_2, pp. 31_60, Jan. 2001.

[11] D. W. Cheung, J. Han, V. T. Ng, and C. Y.

Wong, ``Maintenance of discovered association

rules in large databases: An incremental updating

technique,'' in Proc. 25th Int. Conf. Data Eng.,

Mar. 1996, pp. 106_114.

[12] D.W.-L. Cheung, S. D. Lee, and B. Kao, ``A

general incremental technique for maintaining

discovered association rules,'' in Proc. Int. Conf.

Database Syst. Adv. Appl., Apr. 1997, pp.

185_194.

[13] M.-Y. Lin and S.-Y. Lee, ``Incremental update

on sequential patterns in large databases,'' in

Proc. IEEE Int. Conf. Tools Artif. Intell., Nov.

1998, pp. 24_31.

[14] T.-P. Hong, C.-Y. Wang, and S.-S. Tseng, ``An

incremental mining algorithm for maintaining

sequential patterns using pre-large sequences,''

Expert Syst. Appl., vol. 38, no. 6, pp. 7051_7058,

Jun. 2011.

[15] C.-Y. Wang, T.-P. Hong, and S.-S. Tseng,

``Maintenance of sequential patterns for record

deletion,'' in Proc. IEEE Int. Conf. Data Mining,

Nov. 2001, pp. 536_541.

[16] C.-W. Lin, T.-P. Hong, W.-H. Lu, and W.-Y.

Lin, ``an incremental FUSP-tree maintenance

algorithm,'' in Proc. 8th Int. Conf. Intell. Syst.

Design Appl., Nov. 2008, pp. 445_449.

[17] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ``An

efficient FUSP-tree update algorithm for deleted

data in customer sequences,'' in Proc. Int. Conf.

Innovative Comput., Inf. Control, Dec. 2009, pp.

1491-1494.

