
SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                      Page 107 

A Comparative Study of Entropy Encoding 

Techniques for Lossless Text Data 

Compression  

P. RATNA TEJASWI
1 

Computer Science & Engineering 

Swami Vivekananda Institute of Technology 

Hyderabad, India 

 

P. DEEPTHI
2 

Computer Science & Engineering 

Swami Vivekananda Institute of Technology 

Hyderabad, India 

 

 

V.PALLAVI
3 

Computer Science & Engineering 

Swami Vivekananda Institute of Technology 

Hyderabad, India 

 

D. GOLDIE VAL DIVYA
4 

Computer Science & Engineering 

Swami Vivekananda Institute of Technology 

Hyderabad, India 

  
Abstract: Data compression is the art of reducing the 

number of bits used to store or transmit information. 

Data compression reduces the size of data by removing 

excessive information from it. There are two major 

categories of compression algorithms: Lossy and 

Lossless. This paper examines entropy encoding 

techniques and compares their performance. 

Keywords: Data Compression, Lossy compression, 

Lossless compression, Shannon Fano, Huffman 

coding, Adaptive Huffman coding, Arithmetic coding. 

I.  INTRODUCTION  

Data compression is the representation of an 

information source (a data file, a speech signal, an 

image, or a video signal) as accurately as possible 

using the fewest number of bits [1]. Data 

compression involves the development of a 

compact representation of information. Most of the 

information representations contain large amounts 

of redundancy. Redundancy can exist in various 

forms. It may exist in the form of correlation, 

context, Redundancy is “the part of the message 

that can be eliminated without the loss of essential 

information.” Therefore, one aspect of data 

compression is redundancy removal.  

 

After the redundancy removal process, the 

information needs to be encoded into a binary 

representation. At this stage we make use of the 

fact that if the information is represented using a 

particular alphabet some letters may occur with 

higher probability than others. In the coding step 

we use shorter code w o r d s  t o  

r e p r e s e n t  l e t t e r s  t h a t  
o c c u r  m o r e  f r e q u e n t l y ,  

t h u s  l o w e r i n g  t h e  

a v e r a g e  n u m b e r  o f  b i t s  
r e q u i r e d  t o  r e p r e s e n t  
e a c h  l e t t e r .   

 

The design of a compression algorithm involves 

understanding the types of redundancy present in 

the data and then developing strategies for 

exploiting these redundancies to obtain a compact 

representation of the data. However, more 

popularly, compression schemes are divided into 

two main groups: lossless compression and lossy 

compression. Lossless compression preserves all 

the information in the data being compressed, and 

the reconstruction is identical to the original data. 

In lossy compression some of the information 

contained in the original data is irretrievably lost. 

The loss in information is, in some sense, a 

payment for achieving higher levels of 

compression. 

II. TYPES OF DATA COMPRESSION 

Data compression techniques are broadly classified 

into two types. They are 

a. Lossless Data Compression 

b. Lossy Data Compression 

 

 
Fig 1. Types of Data compression techniques 

 



SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                      Page 108 

A. Lossless Data Compression 

 Lossless data compression can recover exactly 
the original data from the compressed data after a 
compress/expand cycle. Lossless compression is 
generally used for discrete data, such as database 
records, spreadsheets, word-processing files, and 
even some kinds of image and video information 
[2]. Lossless data compression is used ubiquitously 
in computing, from saving space on your personal 
computer to sending data over the web, 
communicating over a secure shell, or viewing a 
PNG or GIF image. 

 

Fig 2: Types of Lossless Data Compression 

1. Entropy based encoding 

Entropy coding creates and assigns a 

unique prefix-free code to each unique symbol that 

occurs in the input. These entropy encoders then 

compress data by replacing each fixed-length input 

symbol with the corresponding variable-length 

prefix-free output codeword. 

 

2. Dictionary based coding 

A dictionary based coding operate by searching 

for matches between the text to be compressed and 

a set of strings contained in a data structure (called 

the 'dictionary') maintained by the encoder. When 

the encoder finds such a match, it substitutes a 

reference to the string's position in the data 

structure. 

 

B. Lossy Data Compression 

Lossy data compression original data is not 

exactly restored after decompression and accuracy 

of re-construction is traded with efficiency of 

compression. Lossy for images and sound where a 

little bit of loss in resolution is often undetectable, 

or at least acceptable. 

 

III. ENTROPY ENCODING TECHNIQUES 

A. Run Length Encoding 

Run-Length Encoding is a very simple 

compression technique that replaces a string of 

repeated symbols with a single symbol and a count 

(run length) indicating the number of times the 

symbol is repeated [3]. 

 

The following Input string:  

MINIMUM 

String can be encoded more compactly by 

replacing each repeated string of characters by a 

single instance of the repeated character and a 

number that represents the number of times it is 

repeated. 

Output: 1M1N1I1M1U1M 

B. Shannon Fanon Encoding 

Shannon-Fano coding is developed by Claude 

Shannon at Bell Labs and R.M. Fano at MIT. It 

depended on simply knowing the probability of 

each symbol‟s appearance in a message [4]. This 

technique involves generating a binary tree to 

represent the probabilities of each symbol 

occurring. The symbols are ordered such that the 

most frequent symbols appear at the top of the tree 

and the least likely symbols appear at the bottom. 

The Shannon-Fano tree is built from the top down, 

starting by assigning the most significant bits to 

each code and working down the tree until finished. 

 

The Shannon-Fano Algorithm: 

Step 1:  

For a given list of symbols, develop a 

corresponding list of probabilities or frequency 

counts so that each symbol‟s relative frequency of 

occurrence is known.  

Step 2:  

Sort the lists of symbols according to 

frequency, with the most frequently occurring 

symbols at the top and the least common at the 

bottom.  

Step 3:  

Divide the list into two parts, with the 

total frequency counts of the upper half being as 

close to the total of the bottom half as possible.  

Step 4:  

The upper half of the list is assigned the 

binary digit 0, and the lower half is assigned the 

digit 1. This means that the codes for the symbols 

in the first half will all start with 0, and the codes in 

the second half will all start with 1.  

Step 5:  

Recursively apply the steps 3 and 4 to each of 

the two halves, subdividing groups and adding bits 

to the codes until each symbol has become a 

corresponding code leaf on the tree. 

Input String: MINIMUM 

 
TABLE 1: SYMBOL FREQUENCIES 

Symbol Count 

M 3 

I 2 

N 1 

U 1 

  

 



SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                      Page 109 

 
   Fig 3: Shannon Fanon Tree 

 

 

 
 Fig 4: Shannon Fanon division 

 

Putting the dividing line between symbols M and I 

assigns a count of 3 to the upper group and 4 to the 

lower. This means that M will have a code that 

starts with a 0 bit, and I, N and U are all going to 

start with a 1. Follow the same procedure for 

further divisions. After four division procedures, 

tables of codes are generated. 

 

Symbol Code   
M 0   
I 10   
N 110   
U 111   
       Tab 2: Shannon Fanon Symbol codes 

 

C. Huffman Encoding 

Huffman coding, an algorithm developed 

by David A. Huffman published in the 1952 paper 

"A Method for the Construction of Minimum-

Redundancy Codes". Huffman coding shares most 

characteristics of Shannon-Fano coding. It creates 

variable-length codes that are an integral number of 

bits. Symbols with higher probabilities get shorter 

codes. Two families of Huffman Encoding have 

been proposed: Static Huffman Algorithms and 

Adaptive Huffman Algorithms. Static Huffman 

Algorithms calculate the frequencies first and then 

generate a common tree for both the compression 

and decompression processes [5]. Details of this 

tree should be saved or transferred with the 

compressed file. The Adaptive Huffman algorithms 

develop the tree while calculating the frequencies 

and there will be two trees in both the processes. 

 

A binary tree is created using the symbols as leaves 

according to their probabilities and paths of those 

are taken as the code words. Huffman codes are 

built from the bottom up, starting with the leaves of 

the tree and working progressively closer to the 

root.  

 

The tree is then built with the following steps:  

Step 1:  

The two free nodes with the lowest 

weights are located.  

Step 2:  

A parent node for these two nodes is 

created. It is assigned a weight equal to the sum of 

the two child nodes.  

Step 3:  

The parent node is added to the list of free 

nodes, and the two child nodes are removed from 

the list. 

Step 4:  

One of the child nodes is designated as the 

path taken from the parent node when decoding a 0 

bit. The other is arbitrarily set to the 1 bit.  

Step 5:  

 The previous steps are repeated until only 

one free node is left. This free node is designated 

the root of the tree. 

 
 Fig 5: Huffman Encoding Tree 

 
TABLE 3: HUFFMAN SYMBOL CODES 

Symbol Code 

M 00 

I 01 

N 10 

U 11 

  

D. Adaptive Huffman Encoding 

       Adaptive Huffman coding was first generated 

by Faller in 1973 and Gallager in 1978. Knuth 

assisted improvements in the original algorithm in 

1985 and the resulting algorithm is known as 



SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                      Page 110 

algorithm FGK. A more current version of this 

coding is described by Vitter in 1987 and called as 

algorithm [6]. 

 

ENCODER                                  

-----------------                                 

Initialize_model();                      

while ((c = getc (input)) != eof)        

  {                                        

    encode (c, output);                      

    update_model (c);                        

  }                                        

} 

 

DECODER 

--------------- 

Initialize_model(); 

while ((c = decode (input)) != eof) 

{ 

 putc (c, output); 

 update_model (c); 

} 

 

The key is to have both encoder and decoder to use 

exactly the same initialization and update_model 

routines. Update_model does two things: (a) 

increment the count, (b) update the Huffman tree. 

 

 
Fig 6: Adaptive Huffman Encoding 

 

During the updates, the Huffman tree will be 

maintained its sibling property, i.e. the nodes 

(internal and leaf) are arranged in order of 

increasing weights. When swapping is necessary, 

the farthest node with weight W is swapped with 

the node whose weight has just been increased to 

W+1. The Huffman tree could look very different 

after node swapping. 

 

E.  Arithmetic Encoding 

       The main goal of Arithmetic coding is to 

replace a stream of input symbols with a single 

floating-point output number [7]. The algorithm 

begins with an interval of 0 and 1. After every 

input symbol from the alphabet is read, the interval 

is divided into a smaller interval in apposite to the 

input symbol‟s probability. This interval starts the 

new interval and it is divided into parts according 

to probability of symbols the input alphabet. This is 

repeated for every input symbol [8]. Unlike other 

statistical methods, it doesn‟t create tree or code for 

every symbol; instead it creates a code called as 

„tag‟ for entire message. 

 
TABLE 4: SYMBOL PROBABILITIES 

Symbol Probability 

M 3/7 =0.42 

I 2/7 = 0.28 

N 1/7 = 0.14 

U 1/7 = 0.14 

  
TABLE 5: LOW AND HIGH VALUES 

Symbol Low High 

M 0  0.42 

I 0.42 0.7 

N 0.7 0.84 

U 0.84 1 

 
TABLE 6: ARITHMETIC ENCODING PROCESS 

Symbol Low High Range 

Initial 0 1 1 

M 0 0.42 0.42 

I 0.1764 0.294 0.1176 

N 0.25872 0.27518 0.01646 

I 0.26563 0.27024 0.00461 

M 0.26563 0.26756 0.00193 

U 0.26725 0.26756 0.00031 

M 0.26725 0.26738  

 

Here  

New low = old low + (range * low of symbol)  

New high = old low + (range * high of symbol)  

Range = High – Low 

 

Using the Tag value, we can decode the string. 

Here tag value is 0.26725 

Or 

Tag = (0.26725+ 0.26738) / 2 

       = 0.267315 

IV. MEASURING ENTROPY ENCODING 

PERFORMANCES 

      This paper introduces the comparison of 

performances of above algorithms, based on 

different factors [9]. There are many different ways 



SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                      Page 111 

to measure the performance of a compression 

algorithm. The main concern is space and time 

efficiency, while measuring the performance. 

Following are some factors used to evaluate the 

performances of the lossless algorithms. 

 

Compression ratio: compression ratio is the ratio 

between size of compressed file and the size of 

source file.  

 

Compression ratio = Size after compression 

        --------------------------------- 

        Size before compression 

 

Compression factor: compression factor is the 

inverse of compression ratio. That is the ratio 

between the size of source file and the size of the 

compressed file.  

 

Compression factor = Size before compression 

           --------------------------------- 

           Size after compression 

 

Saving percentage calculates the shrinkage of the 

source file as a percentage. 

 

Saving percentage =  

 

Size before compression – Size after 

compression 

-------------------------------------------------------------- 

 Size before compression 
 

Compression Time can be defines as time taken to 

compress particular file. Time taken for the 

compression and decompression should be 

considered separately [10]. For a particular file, if 

the compression and decompression time is less 

and in an acceptable level, it means that algorithm 

is acceptable with respect to time. 

 

Entropy can be used as a performance factor, if the 

compression algorithm is based on statistical 

information of the source file [11]. Let set of event 

be S= {s
1
,s

2,
s

3 
,…s

n
}for an alphabet and each s

j 
is a 

symbol used in this alphabet. Let the occurrence 

probability of each event be p
j
for event s

j. 
Then the 

self-information I(s) is defined as follows: 

I(s) = log
b 
1/ p

j
or I(s) = - log

b 
1/ p

j 
 

The first order Entropy value H(P) can be 

calculated as follows:  

n 
H(P) = ∑ Pi log2

(1/
Pi) 

 i=0 

After performing RLE, Shannon Fanon, Huffmon 

Encoding techniques on the string MINIMUM, the 

results are as follows: 

 
TABLE 7: DATA COMPRESSION USING SF ENCODING 

Symbol Count log2
(1/

Pi) Shannon 

fanon 

size 

Shannon 

fanon 

Bits 

M 3 1.2226 1 3 

I 2 1.8074 2 4 

N 1 2.8079 3 3 

U 1 2.8079 3 3 

 
TABLE 8: DATA COMPRESSION USING HUFFMAN 

ENCODING 

Symbol Count log2
(1/

Pi) Huffman 

size 

Huffman 

Bits 

M 3 1.2226 2 6 

I 2 1.8074 2 4 

N 1 2.8079 2 2 

U 1 2.8079 2 2 

 

Entropy Calculation: 

     n 

Entropy =∑ Pi log2
(1/

Pi) 
 i=0 

  

H(P)=0.4285*1.2226+0.2857*1.8074+0.1428*2.80

79+0.1428*2.8079 

       = 1.84219 

 

Default ASCII encoding uses 8bits per symbol. 

Result after SF & Huffman encoding is 1.84219bits 

per symbol. 

 
TABLE 9: PERFORMANCE OF DIFFERENT ENTROPY 

ENCODING TECHNIQUES 

Entropy 

encoding 

methods 

Compression 

Ratio 

Compression 

Factor 

Saving 

percentage  

Run 

Length 

Encoding 

1.333 0.7 42% 

Shannon 

Fanon 

Encoding 

0.2321 4.30 76% 

Huffman 

Encoding 

0.25 4 75% 

 

Arithmetic Encoding algorithm has an Underflow 

problem, which gives an erroneous result after few 

numbers of iterations. Therefore it is not suitable 

for comparison. Huffman Encoding and Shannon 

Fano algorithm shows similar results. Shannon 

Fanon algorithm has more saving percentage than 

Huffman Encoding, so this factor can be used to 

determine the more efficient algorithm from these 

two.  

While considering the major performance factors 

like compression ratio, compression factor and 

saving percentages of the all the selected 

algorithms. The Huffman encoding is considered as 



SSRG International Journal of Computer Science and Engineering - (ICRTESTM) - Special Issue – April 2017 

ISSN: 2348 – 8387                     www.internationaljournalssrg.org                      Page 112 

the most efficient algorithm, as the values of this 

algorithm lies acceptable range and it also shows 

better results. 

V. CONCLUSION 

       This study mainly focuses on various entropy 

encoding techniques. In entropy encoding 

techniques, Shannon Fanon and Huffman encoding 

algorithm are the two methods which are better 

than RLE algorithm. With the help of various 

performance factors, it is easy to choose algorithms 

that are more efficient. This paper demonstrates 

that if we use the right data compression 

techniques, it will certainly be helpful in reducing 

the storage space and the computational resources. 

 

 

REFERENCES 

[1] Introduction to Data Compression, Khalid Sayood, 

Ed Fox (Editor), March 2000.  

[2] Universal lossless data compression algorithms, 

Sebastian Deorowicz, [s.n] publisher,2003 

[3] Amarjit Kaur, Navdeep Singh Sethi, Harinderpal 
Singh, “A Review on Data Compression 

Techniques”, IJARCSSE, Volume 5, Issue 1, January 

2015, ISSN:2277 128X 
[4] Christine Lamorahan, Benny Pinontoan, Nelson 

Nainggolan, “Data Compression Using Shannon-

Fano Algorithm” Jdc, Vol.  2, No. 2, September, 
2013 

[5] Haroon Altarawneh and Mohammad Altarawneh, 

“Data Compression Techniques on Text Files:A 
Comparison Study” International Journal of 

Computer Applications (0975 – 8887) Volume 26– 

No.5, July 2011 
[6] C.Kailasanathan, R.Safavi Naini and P.Ogunbona, 

“Secure Compression using Adaptive Huffman 

Coding” 
IEEE, pp. 336-339 

[7] Paul G. Howard and Jeffrey Scott Vitter, “Practical 

Implementations of Arithmetic Coding”, Technical 
Report No. 92-18, Revised version, April 1992 

[8] G.G. Langdon, “An Introduction to Arithmetic 

Coding”, IBM Journal of Research and 
Development, Volume 28,Issue 2, April 2010, pp 

135-149  

[9] P.Ravi, Dr.A.Ashokkumar, “A Study of Various 
Data Compression Techniques”, IJCSC, Volume 6, 

Issue 2, April-September 2015, ISSN: 0973-7391 
[10] S.R. Kodituwakku and U. S. Amarasinghe 

“Comparison of lossless data compression 

algorithms For text data” Indian Journal of Computer 
Science and Engineering Vol 1 No 4 416-425 

[11] Senthil Shanmugasundaram and Robert Lourdusamy, 

“A Comparative Study Of Text Compression 
Algorithms”. International Journal of Wisdom Based 

Computing, Vol. 1 (3), December 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


