

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 93

Novel Code Compression Techniques for

Embedded Digital Systems Using Separated

Dictionaries
1
Mrs.Savitha.T, Assistant Professor, Dept.of Electronics & Communication Engineering,

Swami Vivekananda institute of Technology, Secunderabad

2
Mr.Parameshwar.B, Assistant Professor, Dept.of Electronics & Communication Engineering,

Swami Vivekananda institute of Technology, Secunderabad

Abstract— Engineers must consider performance,

power consumption, and cost when designing

embedded digital systems; furthermore, memory is a

key factor in such systems. Code compression is a

technique used in embedded systems to reduce the

memory usage. BitMask-based code compression is a

modified version of dictionary-based code

compression. The basic purpose of BitMask is to

record mismatched values and their positions to

compress a greater number of instructions; it can be

used exclusively or incorporated with the reference

instructions to decode the codewords. In this paper,

we applied a small separated dictionary, and variable

mask numbers were used with the BitMask algorithm

to reduce the codeword length of high frequency

instructions. In addition, a novel dictionary selection

algorithm was proposed to increase the instruction

match rates. The fully separated dictionary method

was used to improve the performance of the

decompression engine without affecting the

compression ratio (CR) (the compressed code size

divided by original code size). Based on the

experimental results, the proposed method can

achieve a 7.5% improvement in the CR with nearly no

hardware overhead.

Keywords— Computer architecture, dictionary-based

code compression (DCC), embedded systems, separated

dictionaries..

I. INTRODUCTION

EMBEDDED systems have become an essential
part of everyday life, and are widely used worldwide.
Embedded systems must be cost effective, and
memory occupies a substantial portion of the entire
system. To reduce the system cost,Wolfe and Chanin
[1] first proposed code compression for compressing
the program size in the early 1990s to conserve the
memory usage. In recent decades, the research in
code compression has been conducted to reduce the
code size and power consumption, as well as to
improve the performance.

The compression ratio (CR) is a metric used to
evaluate memory compression efficiency, which is
defined as follows:

Although the area occupied by integrated circuits
has been reduced by recent technical advances, code
compression techniques remain crucial for embedded
systems.

The complexity and performance requirements for
embedded programs grow rapidly, which results in
additional memory usage and power consumption.
For all the existing code compression techniques, all
binary instructions are compressed offline and
decompressed as required during execution. Thus,
reducing the code size and providing a simple
decompression engine are both challenges when
applying code compression to embedded systems.

Dictionary-based code compression (DCC) [2] is
commonly used in embedded systems, because it can
achieve an efficient CR, possess a relatively simple
decoding hardware, and provide a higher
decompression bandwidth than the code compression
by applying lossless data compression methods.

Thus, it is suitable for architectures with high-
bandwidth instruction-fetch requirements, such as the
very long instruction word (VLIW) processors.
Although several existing code compression
algorithms have exhibited favorable compression
performance, no single compression algorithm has
efficiently worked for all kinds of benchmarks. In this
paper, various steps in the code compression process
were combined into a new algorithm to improve the
compression performance (including the CR) with a
smaller hardware overhead. Based on the BitMask
code compression (BCC) algorithm [3], [4], a small
separated dictionary is proposed to restrict the
codeword length of high-frequency instructions, and
a novel dictionary selection algorithm is proposed to
achieve more satisfactory instruction selection, which
in turn may reduce the average CR. Furthermore, the
fully separated dictionary architecture is proposed to

CR ≡ Compressed Program Size + Decoding Table Size

 Original Program Size. (1)

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 94

improve the performance of the dictionary-based
decompression engine.

This architecture has a better chance to parallel
decompress instructions than existing single
dictionary decoders. The remainder of this paper is
organized as follows. Section II presents a review of
related studies on code compression. Section III
describes the BitMask-based compression approaches
[3]–[5]. Section IV describes the proposed codeword-
length-constrained BCC (CLCBCC) algorithm,
mixed-bit saving dictionary selection (MBSDS), and
fully separated dictionary. Section V presents the
experimental results of the benchmarks for ARM

Cortex-A9 and Texas Instruments (TI) C62×× and

C64×× VLIW processors [6].Finally, the

conclusion is drawn in Section VI.

II. RELATED WORK

Numerous lossless data compression algorithms
have been applied to code compression for embedded
systems. Wolfe and Chanin [1] were the first to use
Huffman coding on Microprocessor without
Interlocked Pipeline Stages processors and
implemented a pre-cache structure with modified
cache architecture. A line address table maps the
compressed block addresses to actual memory
addresses when the cache misses and branch
instructions are encountered. Later research in code
compression drew on this research and continued to
use memory addresses for compression. Based on the
same concept, Lekatsas and Wolf [7] applied
arithmetic coding with Markov model to Reduced
instruction set computing (RISC) processors.

All of these methods targeted RISC processors.
Larin and Conte [8] applied Huffman coding to
VLIW processors. Xie et al. [9] used Tunstall coding
and arithmetic coding to perform variable-to-fixed
compression on VLIW processors. Based on the
branch blocks, Lin et al. [10] proposed a Lempel Ziv
Welch-based code compression for VLIW processors.
Lin et al. [11] proposed selective code compression,
which maintained frequently executed small blocks
uncompressed to trade CR for power and
performance.

Bonny and Henkel [12] used Lempel Ziv Storer
Szymanski (an optimized version of LZ77)
compression algorithm in conjunction with a filled
buffer technique and extended blocks to compress
VLIW instructions. Then, they used Huffman coding
to recompress the extended blocks.

Qin and Mishra [13] used bounded Huffman
coding to compress instructions and proposed a
bitstream placement algorithm to replace the
compressed instructions such that all instructions
were simultaneously parallel decompressed.

Bonny and Henkel [14] used extended blocks and
divided each block into two parts: 1) left-
uncompressed instructions and 2) compressed
instructions using the Burrows–Wheeler algorithm.
During the decompression phase, the decompression

engine first sends the left-uncompressed instructions
to the processor, while decompressing the
compressed instructions. It waits until the left-
uncompressed instructions are executed. Although
this method sacrifices some CR, it improves the
performance of a decompression engine.

Lefurgy et al. [2] proposed the first DCC
algorithm, which replaced frequently executed
instructions as dictionary indices. Gorjiara et al. [15]
used DCC with a multi-dictionary for a no instruction
set computer (NISC) architecture. Ros and Sutton
[16] proposed improved DCC methods by
considering Hamming distances and mismatches.
Based on the DCC, Thuresson and Stenstrom [5]
combined dynamic instruction stream editing and
BitMask methods to compress instruction sequences.
Seong and Mishra [3], [4] used several bits as a mask
for increasing the instruction coverage rate, and they
proposed a novel dictionary selection method to
improve the CR. Qin et al. [17] combined the BCC
and run-length coding with an improved dictionary-
selection method for field-programmable gate array
bit streams. Murthy and Mishra [18] used a map
with a multi-dictionary for the NISC architecture.

Bonny and Henkel [19] used dictionary-based and
canonical Huffman coding to reencode the codewords
compressed by Huffman coding in embedded
processors. Both instructions and lookup tables
(LUTs) are compressed to achieve an optimal CR.
Based on the

Fig. 1. Thuresson and Stenstrom’s [16] BitMask-
based method.

same method, Ranjith et al. [20] applied the code
compression in a delta-sigma control-system
processor to reduce the memory cost and optimize
power consumption in the processor. Based on the
BCC, Chen et al. [21] used dictionary-entry
replacement algorithm to reduce the power
consumption of the systems. Azevedo Dias et al. [22]
used Huffman coding to compress two adjacent
instruction sequences and then used the same method
to compress single instructions, which called
compressed code using Huffman-based multilevel
dictionary. They also design a one instruction per
cycle decompression engine. Recent research in code
compression has focused on two directions: 1)
applying existing compression methods to various

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 95

architectures for optimization and 2) combining
several approaches to improve the performance,
including CR.

Seong and Mishra [3], [4] and Wang and Lin [23]
observed that no single compression algorithm
operated efficiently for all the benchmarks. Thus, this
paper integrates several approaches to form a new
algorithm with smaller hardware overhead. New
dictionary architecture is used to improve the
decompression engine performance.

III. PROPOSED ALGORITHMS

In this section, the proposed algorithms are
described. A separate dictionary was used to reduce
the codeword length of high-frequency instructions.
Variable mask numbers were used to eliminate the
encoding redundancy. The combination of these
methods is called as the CLCBCC. A modified
version of a MBSDS algorithm from [23] was used to
select an improved instruction combination for the
dictionary. Compared with [23], a fully separated
dictionary architecture is proposed to reduce the
access latency of the dictionary. Experimental results,
including benchmarks and various processor
architectures, are presented in Section V.

Fig. 2. fft: frequency distribution of 512 dictionary
entries.

A. Separated Dictionaries

In certain cases, such as in low code density
architecture [15], which contains a high number of
unique instructions or because of algorithmic
characteristics, a large LUT is required to compress
the programs. A large LUT has several
disadvantages: it requires a large chip area, additional
power consumption, a long LUT latency, and a long
codeword length.

Thus, it is desirable to minimize the dictionary
size. The static frequency distribution of the
instructions was analyzed from the set of benchmarks

[23] on an TI C62××; the results demonstrated that

only a small set of instructions consistently exhibited
extremely high frequencies. Figs. 3 and 4 show the
frequency distribution of dictionary entries from two
benchmarks: 1) fft, a smaller benchmark with 512
entries and 2) susan, a larger benchmark with 1024

entries. Both distributions were generated using the
frequency-based dictionary selection (FDS)
algorithm. The frequency distributions were similar
for all the benchmarks. Compressing these high-
frequency instructions with the same codeword length
as other low-frequency instructions would result in
inefficient compression. To overcome this problem,
these high-frequency instructions are separated into
another small dictionary to obtain shorter codeword
lengths. Two LUTs are used for the BitMask
approach.

A large LUT is used to compress single
instructions, and a small LUT is used to compress the
extremely high-frequency instructions. The small
LUT was modifiable for storing either single
instructions or instruction sequences [23]. The
specific dictionary architecture for the CLCBCC is
shown in Fig. 5.

B. Variable Mask Numbers

Seong and Mishra [4] surveyed the size and
combination of the masks and they concluded that a
4-bit fixed (4f) and a 1-bit sliding (1s) mask achieves
an optimal CR. However, Wang and Lin [23]
determined that using a 4-bit fixed and a 2-bit fixed
masks in addition to a single 4-bit fixed mask
achieves better results for the benchmarks. Although
the maximum mask overhead was 13 bits (4 bits for
4-bit mask, 3 bits to record the position of the 4-bit
fixed mask, 2 bits for 2-bit mask, and 4 bits to record
the position of the 2-bit fixed mask), it was

determined that ∼50% of the instructions were

compressed using only the 4-bit fixed mask in the
benchmarks.

Thus, in this paper, the 4f mask and the 4f-2f
masks are combined, and 1 bit is used to identify
whether the codeword uses one or two masks. The
encoding format is shown in Fig. 6, which contains
four situations, such as uncompressed, matched with
small dictionary, matched with large dictionary, and
matched using a variable number of masks.

Fig. 4. susan: frequency distribution of 1024
dictionary entries.

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 96

Fig. 5. Specific architecture for the CLCBCC.

Fig. 6. Encoding format for our approach.

C. Mixed Bit Saving Algorithm

FDS cannot achieve an optimal CR in BCC,
because it cannot guarantee that the matched rate of
high-frequency instructions is maximized.

The proposed dictionary selection algorithm is
based on the graph representation. The instructions
are transformed into nodes, and an edge between two
nodes indicates that these two instructions have been
matched to each other using the BitMask approach. In
general, the nodes are classified into five cases
according to the frequency and connection pattern.

Case 1: A high-frequency node mostly connects
to high-frequency nodes.

Case 2: A high-frequency node mostly connects
to low-frequency nodes.

Case 3: A low-frequency node mostly connects to
high-frequency nodes.

Case 4: A low-frequency node mostly connects to
low-frequency nodes.

Case 5: A low-frequency node with few
connections.

Cases 1, 2, and 4 are better choices for the CR
improvement, and Case 2 nodes can achieve the most
savings. Because the high-frequency nodes are
usually selected into the dictionary, the benefits for
nodes in Case 3 are limited. Thus, they are unsuitable
for the dictionary. The nodes in Case 5 are never

selected in the algorithm because their low frequency
and few connections result in low savings.

An MBSDS algorithm is proposed in this paper,
as shown in Algorithm 1. This algorithm is an
improved version of the algorithm proposed in [23].
The new algorithm first transforms every unique
instruction into a single node. Two directional edges
between two nodes indicate that these two
instructions were matched to each other using the
BitMask compression approach.

The proposed algorithm then calculates the bit
saving of all nodes, and inserts the most profitable
node into the dictionary. The most profitable node is
then removed from the graph. Since all the
neighbouring nodes of the most profitable node can
be covered by the most profitable node, the node
saving of each neighbouring node should subtract the
edge saving from the edge with the most profitable
node. Furthermore, all the edges of the neighbouring
nodes are removed. These steps are repeated until the
dictionary is full.

The most profitable node achieves the savings
from the combination of its own node saving and the
edge savings of other nodes. However, connected
instructions cannot be easily inserted into the
dictionary. Whether these connected instructions
should be selected into the dictionary in the following
rounds is solely determined by their frequency values.
This method offers an advantage. When only the
edges connected with the most profitable node are
removed after the most profitable node is selected and
inserted into the dictionary, the algorithm is likely to
choose one of the neighbors of the most profitable

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 97

node as the new profitable node. This, however,
would likely result in many incorrect or Case 3 nodes
being selected and inserted into the dictionary.

IV. EXPERIMENTAL RESULTS

In this section, experimental benchmarking results

for using the ARM Cortex-A9 and TIs C6× series

VLIW processor are presented. The benchmarks were
obtained from MediaBench [25] and Mibench [26],
Figure 4: (a) K means clustering Image (b) Optic disc
(c) Optic cup and are used to access various kinds of
embedded applications.

The benchmarks were compiled using GNU
Compiler Collection and Code Composer Studio for

ARM Cortex-A9 and C6×, respectively. All

instructions are extracted from the text sections of the

compiled binaries on the ARM Cortex-A9 and C6×

architecture.

Fig. 11. Probability distribution of all codeword
types using CLCBCC with FDS on ARM target.

Fig. 12. Probability distribution of all codeword

types using CLCBCC with FDS on TI C62××

target.

A. Compression Ratio

Figs. 11–13 show the probability distribution of
all five possible codeword types when using the
proposed approach with FDS on the ARM and TI

C6× architectures. Beginning with the longest, the

sequence of the lengths of codewords was
uncompressed, decompressed using two masks (4f,
2f), one mask (4f), the large LUT, and the small LUT.
LUT with a size of 2048, and a small LUT with a size

of 16, and codeword lengths of 34, 27, 21, 13, and 6,
the introduction of a separated LUT clearly reduces
the codeword sizes with 20%–30% of the instructions
in nearly all the benchmarks.

In Figs. 14–16, the CRs of three different code
compression algorithms were compared: 1) DCC; 2)
BCC with fixed mask numbers (4f, 1s); and 3)
CLCBCC using a 2f and 4f masks [23], respectively.
Furthermore, the saving rates of Thumb-2 [27] for
benchmarks on the ARM Cortex-A9 processor are
included in Fig. 14, as well. An FDS algorithm was
used to select LUT entries in all these approaches.
For CLCBCC, a small LUT was first constructed, and
then the remaining instructions were used to construct
the large LUT. The results demonstrate that using a
small LUT for storing high-frequency instructions
can result in a CR improvement of 6% for the
CLCBCC compare with BCC. Although using the

debug configuration for the C6× series on the Code

Composer Studio achieved a lower CR and greater
improvements [23], but the release configuration was
used to simulate the experiment in this paper.

Fig. 13. Probability distribution of all codeword

types using CLCBCC with FDS on TI C64××

target.

Fig. 14. Comparison of CR for benchmarks on ARM
Cortex-A9 processor.

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 98

Fig. 15. Comparison of CR for benchmarks on

C62×× processor.

Fig. 16. Comparison of CR for benchmarks on

C64×× processor.

B. Different Selection Algorithms

In Figs. 17–19, the CRs of four different
dictionary selection algorithms are compared: 1)
FDS; 2) BSDS [4]; 3) decoding aware dictionary
selection (DADS) [17]; and 4) the proposed MBSDS,
which is a modification from [23]. Figs. 17–19
compare these algorithms using the proposed
CLCBCC and BCC with fixed mask numbers (4f, 1s).

Fig. 17. Comparison of dictionary selection
algorithms using CLCBCC and BCC approach on

ARM target.

Fig. 18. Comparison of dictionary selection
algorithms using CLCBCC and BCC approach on

C62×× target.

Fig. 19. Comparison of dictionary selection
algorithms using CLCBCC and BCC approach on

C64×× target.

Compared with other selection algorithms, the
proposed MBSDS outperforms the FDS and DADS
for all the benchmarks. Because FDS only took
frequencies rather than BitMask matches, into the
consideration DADS ensures higher instruction
coverage [17].

However, it also selects numerous unnecessary
Case 3 instructions and several incorrect instructions,
which results in a much larger LUT. Seong and
Mishra [4] claimed that a threshold value between 5
and 15 are good for BSDS, thus 10 was set as the
threshold value for BSDS in the simulations. The
results showed that using the same threshold value
can be unstable in different benchmarks, which is a
disadvantage of BSDS. If there are n unique
instructions, the time complexity for both BSDS
(with a given threshold value) and MBSDS is O(n2).
No studies have yet proposed an optimal method to
obtain a superior threshold value. Thus, the threshold
value can only be obtained by trial-and-error. The
BSDS must be performed several times to determine
the superior threshold value. Discovering the
threshold value is time-consuming when the number
of unique instructions is large. The proposed
algorithm thus offers another advantage: 1) it does
not require a threshold to decide whether a node can
be selected and 2) it can avoid the special case
described in Section IV-C. In other words, MBSDS
not only improves the compression efficiency or CR,
but also improves the performance of the algorithm.

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 99

After searching for new algorithms to achieve a
better dictionary selection result, it was concluded
that none of the algorithm can produce a substantial
improvement for the benchmarks. This phenomenon
is explained by Amdahl’s law. The key point of a
dictionary-selection algorithm for the BitMask
method is to increase the match rate, to match a
greater number of instructions for dictionary
selection.

The rate of uncompressed instructions is based on
the Instruction set architecture, compiler, and the
limited dictionary size. On the ARM target, the rate
of uncompressed instructions typically occupies a
small part (7%–16%, as shown in Fig. 11) of every
benchmark, and the instructions that can be matched
by the dictionary selection algorithm occupy only a
small portion of the initially uncompressed

instructions (∼6% on average). Thus, the benefit from

a dictionary selection algorithm is constrained by the
portion of initially uncompressed instructions, and
consequently, regardless of how efficiently the
algorithm increases the match rate, improvements
remained marginal. In other words, the dictionary
selection algorithm only operates efficiently for small
benchmarks with a high-uncompressed instruction
rate. This is explained by

DSCR ≡ No. of Matched Inst. from Uncompressed

Inst. Set

Original Program Size

×(32-len(BitMask Encode Codeword)). (2)

The dictionary selection CR (DSCR) saving rate
is equal to the number of instructions that are
matched from the set of uncompressed instructions.
This number is multiplied by the number of saved
bits by the BitMask method, and then it is divided by
the original program size. The algorithm only
achieves a more efficient DSCR when the program
size is small and the number of uncompressed
instructions is high. For a large benchmark containing
40 000 instructions, and for which 2048 entries were
used to develop the large LUT, the uncompressed
instruction rate, created using the CLCBCC with
FDS, was 10%. Within the uncompressed
instructions, 60% were matched by a more
satisfactory dictionary selection algorithm (40% of
instructions were not matched because of their
Hamming distance mismatch with a limited number
of LUT entries using the BitMask method). A total of
50% of the instructions were matched using one
mask, and 50% using two masks. According to
Amdahl’s law, the CR saving is ideally 10%
multiplied by 12/32 (assuming every instructions can
be matched using only one mask) equals to 3.75%. In
practice, the algorithm only achieved CR savings of
1.59%. This indicates that no dictionary selection
algorithm can produce a substantial improvement in
larger benchmarks. Unless an algorithm that both
increases the match rate and reduces LUT usage
substantially in larger benchmarks exists, achieving
betterCR savings using the dictionary-selection

algorithm in several smaller benchmarks with a high
uncompressed instruction rate is far more practical.
This is the reason why BSDS functions better in [4],
but not in the experiments in this paper.

Fig. 20. CR comparison on ARM target with constant
LUT size.

Fig. 21. CR comparison on C62×× target with

constant LUT size.

However, focusing on a method for reducing only
the uncompressed instruction rate is misleading. In
trivial cases, when the algorithm creates an LUT that
contains all the unique instructions in which the
uncompressed instruction rate is reduced to 0%, but
the LUT overhead and the encoding length may cause
the CR to be over 100%. Reducing the uncompressed
instruction rate is meaningful when considering both
the overheads of LUTs and codewords. Thus, as
shown in Figs. 12 and 13, when the most suitable
LUT size is chosen for each benchmark following the

dictionary selection algorithms, several C6× targets

contained high uncompressed instruction rates (in
excess of 20%). The results indicated that, compared
with BCC with BSDS, the proposed CLCBCC with
MBSDS improves CR by 7% on average, and >7.5%
in the most favorable results (in large benchmarks) on

ARM Cortex and C6× target, and a 6% CR

improvement on C64×× on average. In other

words, the proposed methods are helpful for large
programs to save additional memory usage. Figs. 20–
22 compare the CR of the proposed CLCBCC with
MBSDS against the BCC with BSDS given a
constant LUT size for all benchmarks. When a LUT
with 512 entries is used for both algorithms, the
proposed algorithm exhibits improvements of 7%,
7.5%, and 7% over BCC with BSDS [3], [4] on

ARM, C62×× and C64×× targets, respectively.

SSRG International Journal of Electronics and Communication Engineering - (ICRTESTM) - Special Issue – April 2017

 ISSN: 2348 – 8549 www.internationaljournalssrg.org Page 100

When an LUT with 1024 entries was used, the
improvements are 9%, 9%, and 8%, respectively.

Fig. 22. CR comparison on C64×× target with

constant LUT size.

TABLE I

COMPARISON OF DIFFERENT DECODERS

TABLE II

COMPARISON OF LUT ARCHITECTURE

No complex hardware technique was involved in
improving decompression engine performance. Thus,
the proposed FSDD method introduces nearly no
hardware overhead, and does not affect the CR while
improving execution time and power consumption.

V. CONCLUSION

An improved BCC algorithm is proposed in this

paper. The encoding format was modified to enable

the decompression engine to support multi-LUT

access and use variable mask numbers to operate with

the referenced instructions. Although the tag

overhead to identify the codeword type is increased

by 1 bit, the proposed method improves CR by over

7.5% with a slight hardware overhead. A new

dictionary selection algorithm was also proposed to

improve the CR. The fully separated dictionary

architecture was used to improve the performance of

the decoder, and this architecture is better suitable to

decompress instruction in parallel to increase the

decompression bandwidth per cycle. Multicore

architecture has been a trend in modern embedded

products. However, multicore systems require higher

communication bandwidths either between the

processors and the cache or between the cache and

the memory, than singlecore systems. The design of a

decompression engine is a new challenge for

multicore systems. In the future studies, the design

and implementation of a general multilevel separated

dictionary decompression engine [23] with fully

separated LUTs method and a parallel decompression

engine will be investigated, for applying code

compression to architectures with high bandwidth

requirements, such as multicore architectures. Not

only the CR, but also performance, power

consumption, and communication bandwidth between

the memory and the caches should be analyzed.

REFERENCES

[1] A. Wolfe and A. Chanin, “Executing compressed

programs on an embedded RISC architecture,” in Proc.

25th Annu. Int. Symp. Microarchitecture, Dec. 1992, pp.

81–91.

[2] C. Lefurgy, P. Bird, I.-C. Chen, and T. Mudge,

“Improving code density using compression techniques,” in

Proc. 30th Annu. ACM/IEEE Int. Symp. MICRO, Dec.

1997, pp. 194–203.

[3] S.-W. Seong and P. Mishra, “A bitmask-based code

compression technique for embedded systems,” in Proc.

IEEE/ACM ICCAD, Nov. 2006, pp. 251–254.

[4] S.-W. Seong and P. Mishra, “An efficient code

compression technique using application-aware bitmask

and dictionary selection methods,” in Proc. DATE, 2007,

pp. 1–6.

[5] M. Thuresson and P. Stenstrom, “Evaluation of

extended dictionarybased static code compression

schemes,” in Proc. 2nd Conf. Comput. Frontiers, 2005, pp.

77–86.

[6] TMS320C62x DSP CPU and Instruction Set Reference

Guide, Texas Instruments, Dallas, TX, USA, Jul. 2006.

[7] H. Lekatsas and W. Wolf, “SAMC: A code compression

algorithm for embedded processors,” IEEE Trans.

Computer-Aided Design Integr. Circuits Syst., vol. 18, no.

12, pp. 1689–1701, Dec. 1999.

[8] S. Y. Larin and T. M. Conte, “Compiler-driven cached

code compression schemes for embedded ILP processors,”

in Proc. 32nd Annu. Int. Symp. Microarchitecture, Nov.

1999, pp. 82–91.

