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Abstract— Engineers must consider performance, 

power consumption, and cost when designing 

embedded digital systems; furthermore, memory is a 

key factor in such systems. Code compression is a 

technique used in embedded systems to reduce the 

memory usage. BitMask-based code compression is a 

modified version of dictionary-based code 

compression. The basic purpose of BitMask is to 

record mismatched values and their positions to 

compress a greater number of instructions; it can be 

used exclusively or incorporated with the reference 

instructions to decode the codewords. In this paper, 

we applied a small separated dictionary, and variable 

mask numbers were used with the BitMask algorithm 

to reduce the codeword length of high frequency 

instructions. In addition, a novel dictionary selection 

algorithm was proposed to increase the instruction 

match rates. The fully separated dictionary method 

was used to improve the performance of the 

decompression engine without affecting the 

compression ratio (CR) (the compressed code size 

divided by original code size). Based on the 

experimental results, the proposed method can 

achieve a 7.5% improvement in the CR with nearly no 

hardware overhead. 
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I.  INTRODUCTION  

EMBEDDED systems have become an essential 
part of everyday life, and are widely used worldwide. 
Embedded systems must be cost effective, and 
memory occupies a substantial portion of the entire 
system. To reduce the system cost,Wolfe and Chanin 
[1] first proposed code compression for compressing 
the program size in the early 1990s to conserve the 
memory usage. In recent decades, the research in 
code compression has been conducted to reduce the 
code size and power consumption, as well as to 
improve the performance. 

The compression ratio (CR) is a metric used to 
evaluate memory compression efficiency, which is 
defined as follows: 

Although the area occupied by integrated circuits 
has been reduced by recent technical advances, code 
compression techniques remain crucial for embedded 
systems. 

The complexity and performance requirements for 
embedded programs grow rapidly, which results in 
additional memory usage and power consumption. 
For all the existing code compression techniques, all 
binary instructions are compressed offline and 
decompressed as required during execution. Thus, 
reducing the code size and providing a simple 
decompression engine are both challenges when 
applying code compression to embedded systems. 

Dictionary-based code compression (DCC) [2] is 
commonly used in embedded systems, because it can 
achieve an efficient CR, possess a relatively simple 
decoding hardware, and provide a higher 
decompression bandwidth than the code compression 
by applying lossless data compression methods. 

Thus, it is suitable for architectures with high-
bandwidth instruction-fetch requirements, such as the 
very long instruction word (VLIW) processors. 
Although several existing code compression 
algorithms have exhibited favorable compression 
performance, no single compression algorithm has 
efficiently worked for all kinds of benchmarks. In this 
paper, various steps in the code compression process 
were combined into a new algorithm to improve the 
compression performance (including the CR) with a 
smaller hardware overhead. Based on the BitMask 
code compression (BCC) algorithm [3], [4], a small 
separated dictionary is proposed to restrict the 
codeword length of high-frequency instructions, and 
a novel dictionary selection algorithm is proposed to 
achieve more satisfactory instruction selection, which 
in turn may reduce the average CR. Furthermore, the 
fully separated dictionary architecture is proposed to 

CR ≡ Compressed Program Size + Decoding Table Size 

                          Original Program Size.                      (1) 
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improve the performance of the dictionary-based 
decompression engine. 

This architecture has a better chance to parallel 
decompress instructions than existing single 
dictionary decoders. The remainder of this paper is 
organized as follows. Section II presents a review of 
related studies on code compression. Section III 
describes the BitMask-based compression approaches 
[3]–[5]. Section IV describes the proposed codeword-
length-constrained BCC (CLCBCC) algorithm, 
mixed-bit saving dictionary selection (MBSDS), and 
fully separated dictionary. Section V presents the 
experimental results of the benchmarks for ARM 

Cortex-A9 and Texas Instruments (TI) C62×× and 

C64×× VLIW processors [6].Finally, the 

conclusion is drawn in Section VI.  

II. RELATED WORK 

Numerous lossless data compression algorithms 
have been applied to code compression for embedded 
systems. Wolfe and Chanin [1] were the first to use 
Huffman coding on Microprocessor without 
Interlocked Pipeline Stages processors and 
implemented a pre-cache structure with modified 
cache architecture. A line address table maps the 
compressed block addresses to actual memory 
addresses when the cache misses and branch 
instructions are encountered. Later research in code 
compression drew on this research and continued to 
use memory addresses for compression. Based on the 
same concept, Lekatsas and Wolf [7] applied 
arithmetic coding with Markov model to Reduced 
instruction set computing (RISC) processors.  

All of these methods targeted RISC processors. 
Larin and Conte [8] applied Huffman coding to 
VLIW processors. Xie et al. [9] used Tunstall coding 
and arithmetic coding to perform variable-to-fixed 
compression on VLIW processors. Based on the 
branch blocks, Lin et al. [10] proposed a Lempel Ziv 
Welch-based code compression for VLIW processors. 
Lin et al. [11] proposed selective code compression, 
which maintained frequently executed small blocks 
uncompressed to trade CR for power and 
performance. 

Bonny and Henkel [12] used Lempel Ziv Storer 
Szymanski (an optimized version of LZ77) 
compression algorithm in conjunction with a filled 
buffer technique and extended blocks to compress 
VLIW instructions. Then, they used Huffman coding 
to recompress the extended blocks. 

Qin and Mishra [13] used bounded Huffman 
coding to compress instructions and proposed a 
bitstream placement algorithm to replace the 
compressed instructions such that all instructions 
were simultaneously parallel decompressed. 

Bonny and Henkel [14] used extended blocks and 
divided each block into two parts: 1) left-
uncompressed instructions and 2) compressed 
instructions using the Burrows–Wheeler algorithm. 
During the decompression phase, the decompression 

engine first sends the left-uncompressed instructions 
to the processor, while decompressing the 
compressed instructions. It waits until the left-
uncompressed instructions are executed. Although 
this method sacrifices some CR, it improves the 
performance of a decompression engine. 

Lefurgy et al. [2] proposed the first DCC 
algorithm, which replaced frequently executed 
instructions as dictionary indices. Gorjiara et al. [15] 
used DCC with a multi-dictionary for a no instruction 
set computer (NISC) architecture. Ros and Sutton 
[16] proposed improved DCC methods by 
considering Hamming distances and mismatches. 
Based on the DCC, Thuresson and Stenstrom [5] 
combined dynamic instruction stream editing and 
BitMask methods to compress instruction sequences. 
Seong and Mishra [3], [4] used several bits as a mask 
for increasing the instruction coverage rate, and they 
proposed a novel dictionary selection method to 
improve the CR. Qin et al. [17] combined the BCC 
and run-length coding with an improved dictionary-
selection method for field-programmable gate array 
bit streams. Murthy and Mishra [18] used a   map 
with a multi-dictionary for the NISC architecture. 

Bonny and Henkel [19] used dictionary-based and 
canonical Huffman coding to reencode the codewords 
compressed by Huffman coding in embedded 
processors. Both instructions and lookup tables 
(LUTs) are compressed to achieve an optimal CR. 
Based on the 

 

Fig. 1. Thuresson and Stenstrom’s [16] BitMask-
based method. 

same method, Ranjith et al. [20] applied the code 
compression in a delta-sigma control-system 
processor to reduce the memory cost and optimize 
power consumption in the processor. Based on the 
BCC, Chen et al. [21] used dictionary-entry 
replacement algorithm to reduce the power 
consumption of the systems. Azevedo Dias et al. [22] 
used Huffman coding to compress two adjacent 
instruction sequences and then used the same method 
to compress single instructions, which called 
compressed code using Huffman-based multilevel 
dictionary. They also design a one instruction per 
cycle decompression engine. Recent research in code 
compression has focused on two directions: 1) 
applying existing compression methods to various 
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architectures for optimization and 2) combining 
several approaches to improve the performance, 
including CR. 

Seong and Mishra [3], [4] and Wang and Lin [23] 
observed that no single compression algorithm 
operated efficiently for all the benchmarks. Thus, this 
paper integrates several approaches to form a new 
algorithm with smaller hardware overhead. New 
dictionary architecture is used to improve the 
decompression engine performance. 

III. PROPOSED ALGORITHMS  

In this section, the proposed algorithms are 
described. A separate dictionary was used to reduce 
the codeword length of high-frequency instructions. 
Variable mask numbers were used to eliminate the 
encoding redundancy. The combination of these 
methods is called as the CLCBCC. A modified 
version of a MBSDS algorithm from [23] was used to 
select an improved instruction combination for the 
dictionary. Compared with [23], a fully separated 
dictionary architecture is proposed to reduce the 
access latency of the dictionary. Experimental results, 
including benchmarks and various processor 
architectures, are presented in Section V. 

 

Fig. 2. fft: frequency distribution of 512 dictionary 
entries. 

A. Separated Dictionaries 

In certain cases, such as in low code density 
architecture [15], which contains a high number of 
unique instructions or because of algorithmic 
characteristics, a large LUT is required to compress 
the programs. A large LUT has several 
disadvantages: it requires a large chip area, additional 
power consumption, a long LUT latency, and a long 
codeword length. 

Thus, it is desirable to minimize the dictionary 
size. The static frequency distribution of the 
instructions was analyzed from the set of benchmarks 

[23] on an TI C62××; the results demonstrated that 

only a small set of instructions consistently exhibited 
extremely high frequencies. Figs. 3 and 4 show the 
frequency distribution of dictionary entries from two 
benchmarks: 1) fft, a smaller benchmark with 512 
entries and 2) susan, a larger benchmark with 1024 

entries. Both distributions were generated using the 
frequency-based dictionary selection (FDS) 
algorithm. The frequency distributions were similar 
for all the benchmarks. Compressing these high-
frequency instructions with the same codeword length 
as other low-frequency instructions would result in 
inefficient compression. To overcome this problem, 
these high-frequency instructions are separated into 
another small dictionary to obtain shorter codeword 
lengths. Two LUTs are used for the BitMask 
approach.  

A large LUT is used to compress single 
instructions, and a small LUT is used to compress the 
extremely high-frequency instructions. The small 
LUT was modifiable for storing either single 
instructions or instruction sequences [23]. The 
specific dictionary architecture for the CLCBCC is 
shown in Fig. 5. 

B. Variable Mask Numbers 

Seong and Mishra [4] surveyed the size and 
combination of the masks and they concluded that a 
4-bit fixed (4f) and a 1-bit sliding (1s) mask achieves 
an optimal CR. However, Wang and Lin [23] 
determined that using a 4-bit fixed and a 2-bit fixed 
masks in addition to a single 4-bit fixed mask 
achieves better results for the benchmarks. Although 
the maximum mask overhead was 13 bits (4 bits for 
4-bit mask, 3 bits to record the position of the 4-bit 
fixed mask, 2 bits for 2-bit mask, and 4 bits to record 
the position of the 2-bit fixed mask), it was 

determined that ∼50% of the instructions were 

compressed using only the 4-bit fixed mask in the 
benchmarks.  

Thus, in this paper, the 4f mask and the 4f-2f 
masks are combined, and 1 bit is used to identify 
whether the codeword uses one or two masks. The 
encoding format is shown in Fig. 6, which contains 
four situations, such as uncompressed, matched with 
small dictionary, matched with large dictionary, and 
matched using a variable number of masks. 

 

Fig. 4. susan: frequency distribution of 1024 
dictionary entries. 
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Fig. 5. Specific architecture for the CLCBCC. 

 

Fig. 6. Encoding format for our approach. 

C. Mixed Bit Saving Algorithm 

FDS cannot achieve an optimal CR in BCC, 
because it cannot guarantee that the matched rate of 
high-frequency instructions is maximized. 

The proposed dictionary selection algorithm is 
based on the graph representation. The instructions 
are transformed into nodes, and an edge between two 
nodes indicates that these two instructions have been 
matched to each other using the BitMask approach. In 
general, the nodes are classified into five cases 
according to the frequency and connection pattern. 

Case 1: A high-frequency node mostly connects 
to high-frequency nodes. 

Case 2: A high-frequency node mostly connects 
to low-frequency nodes. 

Case 3: A low-frequency node mostly connects to 
high-frequency nodes. 

Case 4: A low-frequency node mostly connects to 
low-frequency nodes.  

Case 5: A low-frequency node with few 
connections. 

Cases 1, 2, and 4 are better choices for the CR 
improvement, and Case 2 nodes can achieve the most 
savings. Because the high-frequency nodes are 
usually selected into the dictionary, the benefits for 
nodes in Case 3 are limited. Thus, they are unsuitable 
for the dictionary. The nodes in Case 5 are never 

selected in the algorithm because their low frequency 
and few connections result in low savings. 

An MBSDS algorithm is proposed in this paper, 
as shown in Algorithm 1. This algorithm is an 
improved version of the algorithm proposed in [23]. 
The new algorithm first transforms every unique 
instruction into a single node. Two directional edges 
between two nodes indicate that these two 
instructions were matched to each other using the 
BitMask compression approach.  

The proposed algorithm then calculates the bit 
saving of all nodes, and inserts the most profitable 
node into the dictionary. The most profitable node is 
then removed from the graph. Since all the 
neighbouring nodes of the most profitable node can 
be covered by the most profitable node, the node 
saving of each neighbouring node should subtract the 
edge saving from the edge with the most profitable 
node. Furthermore, all the edges of the neighbouring 
nodes are removed. These steps are repeated until the 
dictionary is full. 

 

The most profitable node achieves the savings 
from the combination of its own node saving and the 
edge savings of other nodes. However, connected 
instructions cannot be easily inserted into the 
dictionary. Whether these connected instructions 
should be selected into the dictionary in the following 
rounds is solely determined by their frequency values. 
This method offers an advantage. When only the 
edges connected with the most profitable node are 
removed after the most profitable node is selected and 
inserted into the dictionary, the algorithm is likely to 
choose one of the neighbors of the most profitable 
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node as the new profitable node. This, however, 
would likely result in many incorrect or Case 3 nodes 
being selected and inserted into the dictionary. 

IV. EXPERIMENTAL RESULTS 

In this section, experimental benchmarking results 

for using the ARM Cortex-A9 and TIs C6× series 

VLIW processor are presented. The benchmarks were 
obtained from MediaBench [25] and Mibench [26], 
Figure 4: (a) K means clustering Image (b) Optic disc 
(c) Optic cup and are used to access various kinds of 
embedded applications.  

The benchmarks were compiled using GNU 
Compiler Collection and Code Composer Studio for 

ARM Cortex-A9 and C6×, respectively. All 

instructions are extracted from the text sections of the 

compiled binaries on the ARM Cortex-A9 and C6× 

architecture. 

 

Fig. 11. Probability distribution of all codeword 
types using CLCBCC with FDS on ARM target. 

 

Fig. 12. Probability distribution of all codeword 

types using CLCBCC with FDS on TI C62×× 

target. 

A. Compression Ratio 

Figs. 11–13 show the probability distribution of 
all five possible codeword types when using the 
proposed approach with FDS on the ARM and TI 

C6× architectures. Beginning with the longest, the 

sequence of the lengths of codewords was 
uncompressed, decompressed using two masks (4f, 
2f), one mask (4f), the large LUT, and the small LUT. 
LUT with a size of 2048, and a small LUT with a size 

of 16, and codeword lengths of 34, 27, 21, 13, and 6, 
the introduction of a separated LUT clearly reduces 
the codeword sizes with 20%–30% of the instructions 
in nearly all the benchmarks. 

In Figs. 14–16, the CRs of three different code 
compression algorithms were compared: 1) DCC; 2) 
BCC with fixed mask numbers (4f, 1s); and 3) 
CLCBCC using a 2f and 4f masks [23], respectively. 
Furthermore, the saving rates of Thumb-2 [27] for 
benchmarks on the ARM Cortex-A9 processor are 
included in Fig. 14, as well. An FDS algorithm was 
used to select LUT entries in all these approaches. 
For CLCBCC, a small LUT was first constructed, and 
then the remaining instructions were used to construct 
the large LUT. The results demonstrate that using a 
small LUT for storing high-frequency instructions 
can result in a CR improvement of 6% for the 
CLCBCC compare with BCC. Although using the 

debug configuration for the C6× series on the Code 

Composer Studio achieved a lower CR and greater 
improvements [23], but the release configuration was 
used to simulate the experiment in this paper.  

 

Fig. 13. Probability distribution of all codeword 

types using CLCBCC with FDS on TI C64×× 

target. 

 

Fig. 14. Comparison of CR for benchmarks on ARM 
Cortex-A9 processor. 
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Fig. 15. Comparison of CR for benchmarks on 

C62×× processor. 

 

Fig. 16. Comparison of CR for benchmarks on 

C64×× processor. 

B. Different Selection Algorithms 

In Figs. 17–19, the CRs of four different 
dictionary selection algorithms are compared: 1) 
FDS; 2) BSDS [4]; 3) decoding aware dictionary 
selection (DADS) [17]; and 4) the proposed MBSDS, 
which is a modification from [23]. Figs. 17–19 
compare these algorithms using the proposed 
CLCBCC and BCC with fixed mask numbers (4f, 1s). 

 

Fig. 17. Comparison of dictionary selection 
algorithms using CLCBCC and BCC approach on 

ARM target. 

 

Fig. 18. Comparison of dictionary selection 
algorithms using CLCBCC and BCC approach on 

C62×× target. 

 

Fig. 19. Comparison of dictionary selection 
algorithms using CLCBCC and BCC approach on 

C64×× target. 

Compared with other selection algorithms, the 
proposed MBSDS outperforms the FDS and DADS 
for all the benchmarks. Because FDS only took 
frequencies rather than BitMask matches, into the 
consideration DADS ensures higher instruction 
coverage [17].  

However, it also selects numerous unnecessary 
Case 3 instructions and several incorrect instructions, 
which results in a much larger LUT. Seong and 
Mishra [4] claimed that a threshold value between 5 
and 15 are good for BSDS, thus 10 was set as the 
threshold value for BSDS in the simulations. The 
results showed that using the same threshold value 
can be unstable in different benchmarks, which is a 
disadvantage of BSDS. If there are n unique 
instructions, the time complexity for both BSDS 
(with a given threshold value) and MBSDS is O(n2). 
No studies have yet proposed an optimal method to 
obtain a superior threshold value. Thus, the threshold 
value can only be obtained by trial-and-error. The 
BSDS must be performed several times to determine 
the superior threshold value. Discovering the 
threshold value is time-consuming when the number 
of unique instructions is large. The proposed 
algorithm thus offers another advantage: 1) it does 
not require a threshold to decide whether a node can 
be selected and 2) it can avoid the special case 
described in Section IV-C. In other words, MBSDS 
not only improves the compression efficiency or CR, 
but also improves the performance of the algorithm. 
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After searching for new algorithms to achieve a 
better dictionary selection result, it was concluded 
that none of the algorithm can produce a substantial 
improvement for the benchmarks. This phenomenon 
is explained by Amdahl’s law. The key point of a 
dictionary-selection algorithm for the BitMask 
method is to increase the match rate, to match a 
greater number of instructions for dictionary 
selection.  

The rate of uncompressed instructions is based on 
the Instruction set architecture, compiler, and the 
limited dictionary size. On the ARM target, the rate 
of uncompressed instructions typically occupies a 
small part (7%–16%, as shown in Fig. 11) of every 
benchmark, and the instructions that can be matched 
by the dictionary selection algorithm occupy only a 
small portion of the initially uncompressed 

instructions (∼6% on average). Thus, the benefit from 

a dictionary selection algorithm is constrained by the 
portion of initially uncompressed instructions, and 
consequently, regardless of how efficiently the 
algorithm increases the match rate, improvements 
remained marginal. In other words, the dictionary 
selection algorithm only operates efficiently for small 
benchmarks with a high-uncompressed instruction 
rate. This is explained by 

DSCR ≡ No. of Matched Inst. from Uncompressed 

Inst. Set 

Original Program Size 

×(32-len(BitMask Encode Codeword)). (2) 

The dictionary selection CR (DSCR) saving rate 
is equal to the number of instructions that are 
matched from the set of uncompressed instructions. 
This number is multiplied by the number of saved 
bits by the BitMask method, and then it is divided by 
the original program size. The algorithm only 
achieves a more efficient DSCR when the program 
size is small and the number of uncompressed 
instructions is high. For a large benchmark containing 
40 000 instructions, and for which 2048 entries were 
used to develop the large LUT, the uncompressed 
instruction rate, created using the CLCBCC with 
FDS, was 10%. Within the uncompressed 
instructions, 60% were matched by a more 
satisfactory dictionary selection algorithm (40% of 
instructions were not matched because of their 
Hamming distance mismatch with a limited number 
of LUT entries using the BitMask method). A total of 
50% of the instructions were matched using one 
mask, and 50% using two masks. According to 
Amdahl’s law, the CR saving is ideally 10% 
multiplied by 12/32 (assuming every instructions can 
be matched using only one mask) equals to 3.75%. In 
practice, the algorithm only achieved CR savings of 
1.59%. This indicates that no dictionary selection 
algorithm can produce a substantial improvement in 
larger benchmarks. Unless an algorithm that both 
increases the match rate and reduces LUT usage 
substantially in larger benchmarks exists, achieving 
betterCR savings using the dictionary-selection 

algorithm in several smaller benchmarks with a high 
uncompressed instruction rate is far more practical. 
This is the reason why BSDS functions better in [4], 
but not in the experiments in this paper. 

 

Fig. 20. CR comparison on ARM target with constant 
LUT size. 

 

Fig. 21. CR comparison on C62×× target with 

constant LUT size. 

However, focusing on a method for reducing only 
the uncompressed instruction rate is misleading. In 
trivial cases, when the algorithm creates an LUT that 
contains all the unique instructions in which the 
uncompressed instruction rate is reduced to 0%, but 
the LUT overhead and the encoding length may cause 
the CR to be over 100%. Reducing the uncompressed 
instruction rate is meaningful when considering both 
the overheads of LUTs and codewords. Thus, as 
shown in Figs. 12 and 13, when the most suitable 
LUT size is chosen for each benchmark following the 

dictionary selection algorithms, several C6× targets 

contained high uncompressed instruction rates (in 
excess of 20%). The results indicated that, compared 
with BCC with BSDS, the proposed CLCBCC with 
MBSDS improves CR by 7% on average, and >7.5% 
in the most favorable results (in large benchmarks) on 

ARM Cortex and C6× target, and a 6% CR 

improvement on C64×× on average. In other 

words, the proposed methods are helpful for large 
programs to save additional memory usage. Figs. 20–
22 compare the CR of the proposed CLCBCC with 
MBSDS against the BCC with BSDS given a 
constant LUT size for all benchmarks. When a LUT 
with 512 entries is used for both algorithms, the 
proposed algorithm exhibits improvements of 7%, 
7.5%, and 7% over BCC with BSDS [3], [4] on 

ARM, C62×× and C64×× targets, respectively. 
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When an LUT with 1024 entries was used, the 
improvements are 9%, 9%, and 8%, respectively. 

 

Fig. 22. CR comparison on C64×× target with 

constant LUT size. 

TABLE I 

COMPARISON OF DIFFERENT DECODERS 

 

 

 

TABLE II 

COMPARISON OF LUT ARCHITECTURE 

 

 

No complex hardware technique was involved in 
improving decompression engine performance. Thus, 
the proposed FSDD method introduces nearly no 
hardware overhead, and does not affect the CR while 
improving execution time and power consumption. 

V. CONCLUSION  

An improved BCC algorithm is proposed in this 

paper. The encoding format was modified to enable 

the decompression engine to support multi-LUT 

access and use variable mask numbers to operate with 

the referenced instructions. Although the tag 

overhead to identify the codeword type is increased 

by 1 bit, the proposed method improves CR by over 

7.5% with a slight hardware overhead. A new 

dictionary selection algorithm was also proposed to 

improve the CR. The fully separated dictionary 

architecture was used to improve the performance of 

the decoder, and this architecture is better suitable to 

decompress instruction in parallel to increase the 

decompression bandwidth per cycle. Multicore 

architecture has been a trend in modern embedded 

products. However, multicore systems require higher 

communication bandwidths either between the 

processors and the cache or between the cache and 

the memory, than singlecore systems. The design of a 

decompression engine is a new challenge for 

multicore systems. In the future studies, the design 

and implementation of a general multilevel separated 

dictionary decompression engine [23] with fully 

separated LUTs method and a parallel decompression 

engine will be investigated, for applying code 

compression to architectures with high bandwidth 

requirements, such as multicore architectures. Not 

only the CR, but also performance, power 

consumption, and communication bandwidth between 

the memory and the caches should be analyzed. 
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