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Abstract: To extract a multi-view foreground object 

which is bounded by the convex volume of interest 

defined by the overlapping space of camera viewing 

frustums. Identifying the target object across different 

images that share a same geometric representation in 

space and texture model from background for multi-

view binary co-segmentation and detecting the color 

ambiguous regions along the object boundary for 

matting refinement. Our matting region detection is 

based on kullback-leibler divergence of local color 

distributions of different pixel bands. Our results are 

high quality alpha mattes consistent across all 

different viewpoints. 
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I.LITERATURE REVIEW 

  The goal of multi-view object extraction is to 

simultaneously segment the foreground object from 

multiple images, each captured at different 

viewpoints of  the target object. 

In recent years, configurations including multiple 

cameras have gained interest and many 

researchworks have targeted reconstruction, tracking, 

motion analysis and actionrecognition. For all these 

applications, the identification and extraction of 

foreground objectsis a key element. 

In monocular scenarios, the object to segment is not 

clearly defined and themethods mostly rely on a user 

interaction so these methods are generally limited to 

well controlled environments in multi-camera setups 

of monocular segmentation.Many works  since 

followed this first attempt tosolve the problem, with 

the common objective of expressing segmentation 

constraints from the multi-view geometry. Zeng 

proposed  a method that propagates color consistency 

between viewpoints by iteratively carving the visual 

hull with respect to color consistency in each image 

,however it only approximates spatial coherence 

which should be enforced over all viewpoints 

simultaneously. Recent approaches are able to 

automatically co-segment a multi-view object in 

natural environments by using either common 

appearance models in images or geometric constrains 

across viewpoints. Previously for segmenting the 

foreground object we utilized the technique of co-

segmentation algorithm but due to user interactions 

such as bounding boxes and foreground scribbles for 

each image at every iteration these systems mostly 

require user corrections. However, when some of 

them share a common 3D space among input images. 

These do not consider any geometric relations. 

Extending this work,  to enforce geometric constrains 

on the multi view-images, Rother et al proposed an 

idea based on strong assumption of color similarity 

that is the presence of same object in different images 

for segmenting a task, but this category intrinsically 

restrict to appearance-based cues. In the next work 

Yezzi et al used a level set method for evolving 2D 

contours consistent with the 3D space which is under 

strict assumption that a scene is composed of several 

homogeneous backgrounds and strong  irradiance 

discontinuities. He proposed an algorithm to 

reconstruct solid shape and radiance from a number 

of calibrated views of scene with smooth shape and 

radiance or  homogeneous  fine texture but it is 

having a disadvantage that it is easily resistant to 

noise and not work in the presence of strong texture 

and boundaries. After yezzi et al, Snow et al 

proposed an approach based on geometric constraint 

which is applied to  their probabilistic functions so 

that static background models could be successfully 

merged in to 3D representation but the assumption of 

clean background does not hold in real world. Due to 

the errors in previous approaches campbell et al 

assumed that the target object is fixed at the center of 

visual hull and they collected definite foreground 

samples near the camera centers in images but the 

model is not able to manage when the object is 

loosely bounded in images. Recently for better 

segmentation results they come up with the technique 

of MRF optimization and also uses graph-cut based  

multi-view co-segmentation algorithms. In MRF 

optimization technique number of iterations are 

performed to check whether the current binary labels 

are also correct from other view points. In contrast to 

previous approaches at present researchers are 

utilizing the concept of  Structure from motion 

pipeline instead of using dense geometry acquisition 

and finds the initial space of interest that is fully 

visible to all input cameras. 

Matting: 
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   Matting is a process of segmenting a foreground 

object with its fractional boundaries. To specify 

foreground, background and uncertainty regions there 

are some approaches dealt sample based, affinity 

based, single image matting, narrow baseline image 

matting and wide base line image matting. In single 

image and narrow-baseline image matting these 

approaches share a same baseline with almost 

identical appearance of foreground objects in each 

input image. Hence, it only works at the front-parallel 

configuration of cameras and the generalization is not 

straight forward. For wide-baseline image matting 

,Sarimet al partially applied the epipolar line 

constraint to isolate the shadow regions in pixel 

spaces and performed matting as post processing. 

 

II.INTRODUCTION: 

  In this paper, we present some reliable solutions 

based on the previous approaches which utilizes the 

features of bounding-volume prior from camera 

poses, appearance models under geometric 

constraints and iterative Markov random field 

optimization. So, we present a multi-view matte 

estimation method on the top of previous approaches 

which not only estimates the binary masks but also 

soft alpha mattes of a foreground object. 

In contrast to previous paper of the two phase 

approach for multi-view object extraction, in this we 

propose a method to estimate the unknown regions 

more accurately and also improve the quality 

estimated alpha mattes by providing color and texture 

information along with the geometric constraints for 

more accurate foreground estimation and providing a 

dynamic  approach for estimating  unknown regions. 

   Here, we evaluate our algorithm to claim the 

advantages of automatically estimating a tight bound 

of foreground object by the convex hull of visible 

SFM points. In addition it is based on simple 

geometric representation that defines 3D reference 

points in space and links between super pixels in 

images. Without requiring the 3D structure 

refinement  stage, our approach samples regular grids 

of the initial convex hull and only keeps physically 

meaningful surface samples through the visibility 

computation at every iteration. Secondly our 

appearance model of the foreground object is more 

robust because it can seek the texture patterns of an 

object so that our MRF optimization overcomes 

possible local minimum. It can also handle high 

resolutions images with minimum user interventions 

because the optimization and matting procedure only 

performed on uncertainty regions of the trimaps. 

  The outlook for the process is given below: Initially 

the user defines which is the foreground and 

background regions assuming the target object is 

bounded by the convex hull of camera viewing 

frustums and develop an initial contour for the 

foreground region. Based on the initial contour, 

estimate the appearance models of foreground 

regions which is comprised of color and texture 

model. We define MRF optimization for getting 

binary segmentations and refine those contours so 

that they are accurately located at the object 

boundaries. To evaluate the color mixing of the 

foreground and background regions along with the 

unknown regions we utilize the process of evaluating 

the distribution  of colors within the local pixel 

bands. Lastly by using the matting laplacian we solve 

for the fractional boundaries of the target foreground 

object. The local pixel band with largest entropy is 

selected for matting refinement ,subject to multi-view  

consistent constraint. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure1: Flow of the process 

II.PROPOSED METHOD 
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low resolution. After that we estimate the multi-view 

trimaps and mattes at the original image resolution. 

Figure 2 shows the pipeline. 

 
Input images     Binary masks           Output masks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                Figure2. System overview 

 

Assuming that the target object is located inside the 

convex space of camera viewing frustums for the 

initialization of the foreground mask. So the first step 

is to estimate the binary masks X={X
1
,X

2
,...X

N
} of 

the target object in multi-view images I={I
1
,I

2
...I

N
}, 

where N is number of input images. Let the initial 

mask be M={M
1
,M

2
....M

N
}, for the projections of the 

bounding volume. After gettingan initial mask, we 

perform the superpixel segmentation in which each 

superpixel consists of color and gradient components 

and denote the superpixel  sets as S={S
1
,S

2
...S

N
}. We 

utilize iterative graph-cut optimization to achieve our 

goal of estimating the binary masks. 

  Based on the initial mask M, we build MRF 

formulation utilizing the concept of appearance 

models and considering the geometric information. 

The binary segmentation in the first phase is 

formulated as single energy function in the MRF 

frame work. The appearance model consists of color 

GMM's and a SVM classifier of foreground and 

background regions. Our objective function consists 

of the data term Ed,where the it is defined as the 

likelihood similarity using the color and the 

geometric consistency term,  which is designed based 

on the appearance models Ea and a geometric 

model  .The neighborhood term Enare weighted 

by   for geometrically linking nodes across the 

related viewpoints,    for considering color and 

texture  linkages  in each image. In MRF frame work 

we consider the term Enc for similar colors, textures 

and Eng for geometric linkages in designing of the 

neighborhood term. 

                      (   )      

                                   

    The parameter ρ determines which data term is 

more reliable for the energy assigning of the node. 

When both foreground and background models of the 

pixel or superpixel have similar metrics then a more 

weight is given to the geometric consistency term. 

Geometric representation: 

 In our approach the geometric coherence of the 

binary segmentations us evaluated for every MRF 

iteration. The geometric coherence can be effectively 

made by using camera projection matrix for 

correspondence point in the foreground image 

become true foreground when warped pixel position 

in other images also belongs to the foreground 

regions. In this approach for the geometric coherence 

we define the term coherence score for a superpixels 

which is normalized to have a range of [0 1]. The 

geometric information can be gathered by 

considering the regularly distributed 3D points in the 

convex spaceare used to connect superpixels across 

the input images in the foreground masks for the 

purpose of score evaluation and named these 

uniformly distributed 3D points as anchor points P 

that has the occupancy probability v indicating the 

coherency of superpixels. Here each anchor point 

becomes the auxiliary node and superpixels as nodes 

and build a single graph model. We perform a 

visibility check for the anchor points to remove the 

occluded samples. The graph labeling problem is 

iteratively solved by MRF optimization. The 

sampling rate is chosen such that one superpixel 

observes at least one 3D anchor in the 3D space. 

Thus, the geometric consistency can be guaranteed 

by enforcing the same binary label assigned to 

superpixels which observe the same anchor point. In 

our experiment, this approximate representation 

demonstrates good results to impose a penalty for 

consistent foreground mask estimation.The coherence 

score of the pixel(   
 ) and superpixel(  

 ) are 

defined as the sum of the binary labels x or X : 
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The geometric energy term of the background and 

foreground are modeled by using a sigmoid function 

and is given by  

  (    )  
   

      ,   (      )-
 

 

  - controls the shape of the energy functions  

    - used for the tolerance of  thin foreground 

segments with possible calibration errors.    

The energy connected to the background is bounded 
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 The neighborhood terms can be considered using 

inter-view links between super pixel notes according 

to 3D anchors. the neighboring term in the 

constructed graph is solved by considering all super 

pixel related to one another as sharing the common 

geometric model. Our energy term for     is given 

by: 

   (  
    

 
)  ∑    

    
 

       
      

Appearance models: 

To take color and texture patterns in super pixel in to 

account  we use the appearance model. The energy 

term in this model consist of Gaussian mixture model 

and fisher kernel representation .Mixture models are 

type density model which comprise a number of 

component functions usually Gaussian. These 

component functions are combined to provide a multi 

modal density . They can be employed to model 

colors of an object in order to perform tasks such as 

real time color based tracking and segmentation. To 

perform the task we build color GMM of per-pixel 

distributions  for each image and classify both 

foreground and background color distribution. To 

control the influence of texture term and color term 

we use the parameter   . The appearance energy term 

is given by : 

            

  - it is the fisher kernel representation of each super 

pixel 

Color GMM: 

From the output of binary segmentation we collect 

some samples to represent them in color GMM 

model, using lab color space in the ranging between 0 

and 1 which gives more weight to the chromatic 

channels and less weight to luminance channel to 

reduce the effects of shadows and also RGB color 

space. Noise removing and noise reduction of 

pictures are also are important in classical image 

problems. To remove image noises and to avoid over-

fitting of color distribution we apply Gaussian 

smoothing to each RGB channel before building the  

GMMs. We vectorize a color pixel in an image Ik
n
 as 

a nine-dimension vector, stacking the lab colors 

space and the RGB color space for two different 

Gaussian blurs. 

  Suppose we have the current binary segmentation of 

the foreground and the background, we can collect 

samples to build the GMM color model: 

 

   (  |  )  ∑   
 

    

   

  (     
    

 ) 

   (     )  ∑   
 

    

   

  (     
    

 ) 

where  
   (     

    
 )indicates the weight Gaussian 

component having mean    and variance   on the 

foreground label. previously for each GMM of the 

current foreground and the background, we use 20 to 

30 Gaussian function to model the distribution. when 

we measure the distance of pixel between the 

foreground and the  background, instead of using all 

Gaussian functions N, we use the 5 nearest Gaussian 

functions by defining   
    

  as the minimum metric 

closer to mahalanobis disance. For suppose if we take 

the some part of the target object the conventional 

GMM will disregard some details of the object 

because if having the fewer samples. In our project 

we take all details of the object  because other false 

alarms can be effectively suppressed by iterative 

optimization. The color consistency term are 

normalized to satisfy    (  |  )     (     )   for 

the proper energy terms. The average of these 

energies in a group of pixels is assigned to their super 

pixel node in MRF. To convert an arg max MAP 

problem to an arg min energy minimization we take 

an negative log of probability in modeling of the 

color term. So when modeling of the color GMM 

model the data term is updated iteratively according 

to binary segmentation results of previous iteration. 

In the data term, When the color of the pixel has 

similar distance to both the foreground and 

background GMM, we give less weight to color 

consistency term and vice versa. 

     The fisher kernel in the appearance energy term is 

a function that measures the similarity of two objects 

on the basis of sets of measurements for each object 

and a statistical model. In a classification procedure, 

the class for a new object (whose real class is 

unknown) can be estimated by minimizing, across 

classes, an average of the Fisher kernel distance from 

the new object to each known member of the given 

class. It combines the advantages of generative 

statistical model like Markov field and those of 

discriminative methods like support vector machines. 

The fisher kernel can be applied to image 

representation for classification problems.Currently, 
the most popular bag-of-visual-words representation 

suffers from  high dimensionality. The Fisher kernel 

can result in a compact and dense representation, 

which is more desirable for image classification and 

retrievalproblems.The Fisher Vector (FV), a special, 

approximate, and improved case of the general Fisher 

kernel, is an image representation obtained by 

pooling local image features. The FV encoding stores 

the mean and the covariance deviation vectors per 

component k of the Gaussian-Mixture-Model (GMM) 

and each element of the local feature descriptors 

together. In a systematic comparison, FV 

outperformed all ,Kernel Codebook encoding etc., 

showing that the encoding of second order 

https://en.wikipedia.org/wiki/Bag_of_words_model_in_computer_vision
https://en.wikipedia.org/wiki/Feature_(computer_vision)
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information indeed benefits classification 

performance 

Texture: 

Our key idea for encoding texture informationis 

building common texturethat is comprehensive 

foreground/background texture prior regardless of the 

viewpoints.To encode texture information, we take 

the luminance channellin the labspace, and compute 

the x, y, xy, and yxdirectionalderivatives of 

Gaussians at two different sigma scales, 

andLaplacian of Gaussians at three sigma scales. 

Then those11-dimensional vectors in one viewpoint 

are added to theoriginal 9-dimensional vectors of 

color components. The new20-dimensional vectors 

for each pixel in all input images areclustered to 

create 64 GMMs, followed by description of 

allsuperpixels to Fisher vectors with respect to the 

global GMMs. 

In this manner, we get a descriptor   for superpixel 

k. Afterthe normalization of superpixel descriptors as 

in, we traina linear SVM either using all positive and 

negative vectors and their labels   
   (   

 

 
) 

across view points, or build SVMs  by having the 

samples only in the respective view. The scores from 

the trained w give the texture driven- energies Et to 

each superpixel: 

∑ (  
 

 

   

     )  
 

 
     

 When using appearance-based methods, we usually 

represent an image of size n·m pixel by a vector in an 

(n m) dimensional space. In practice, however these 

(n m) dimensional space are too large to allow robust 

and fast object recognition. A common way to 

attempt to resolve this problem is to use 

dimensionality reduction techniques. While building 

the initial graph with neighborhood connections the 

superpixels descriptors are represented by Sk. In the 

implementations, each superpixel is connected to 

eight adjacent nodes and is non-locally linked at most 

with eight similar descriptors in the cost 

space.Previously we used the standard PCA 

projections for these reduction technique but due to 

some limitations we switch to use the techniques of 

LDA analysis. Both linear discriminant 

analysis(LDA) and principle component 

analysis(PCA) are linear transformation techniques 

that are commonly used for dimensionality reduction. 

PCA can be described as an unsupervised algorithm, 

since it ignores class labels and its goal is to find the 

directions( the so called principle component) that 

maximize the variance in the data set. In contrast to 

PCA, LDA is an supervised and computes the 

direction( linear discriminants) that will represent the 

axis that maximize the separation between multiple 

classes. Although it might sound intuitive that LDA 

is superior to PCA for a multi-class classification task 

where the class labels are known, this might not 

always the case. For greater computational 

efficiency, mean pooling on color vectors is another 

good approximate option. The pair wise term is 

implemented by Potts model in superpixel 

segmentation context, where node is connected to the 

K nearest neighbors in the X
2
 metric between the 

superpixel descriptors: 

 

   (     )  ∑           (  ,  (  
    

 )- 

   

) 

 

By using the parameter β we can normalize the 

distance function. So this texture model is developed 

in a way that the gradient magnitudes do not lose the 

directional information and so helpful when we have 

a similar texture parts in foregrounds with blurry 

backgrounds. 

Energy minimization: 

   In practice labeling all pixels at the original image 

resolution is a time consuming task. So instead of 

labeling all the pixels we take one or two additional 

coarse resolutions for the rough superpixel 

segmentation before we start the pixel-level 

optimization using the initial energy. The weight of 

the   can be increased during the iterative 

refinement of the multi-scale segmentations because 

to make our 3D surface samples become accurate and 

dense enough to cover pixel level score maps. 

  In the pixel segmentation, we use the typical 

contrast term for the eight connected grids and add 

view-view linkages coming from the final 3D surface 

structure. The neighborhood term for the two 

adjacent nodes   and      using a color energy     

and geometric energy     as: 

 

   (     )  ∑           ,  (     )
 -

   

 

   (  
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In our experiment,most cases required less than three 

iterations to reach stablelabeling results. When we 

could not solve the MRF with morethan eight inputs 

at a high resolution due to memory limitation,we 

divided them into eight-viewpoint subsets to be 

respectivelyoptimized after re-computation of the 

visibility maps.However, we also found that the 3D 

structures derived fromeight views are good enough 

to project to the other calibratedviews. Hence, we 

were able to perform per-view graph-cutsusing its 

appearance, geometric models with λng= 0. It isstill 

useful to have such inter-view linkages coming from 
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3D sample or SIFT-based correspondence in 

inferringcorrect labels.  

Multi-view matte estimation: 

Taking the output of the MRF formulation which  

have estimated binary labels x and the score maps 

v,the next step is to generate trimaps T and the 

estimated alpha matte α of the foreground object. 

 

Supporting region detection: 

 

  To measure the amount of local color spread in the 

foreground region for the target object we use the KL 

divergence to measure it. The method used for the 

measurement of color spread for matte region 

detection is two-color line model applied for any 

local color distribution. The effects of color mixing 

can be approximated by a linear combination oftwo 

different colors. If the color samples are concentrated 

in the middle of the line model and two end at points 

of the line model then we can judge mixing effect of 

two colors is strong in the middle and has a sharp at 

boundary between two regions at the two end points.  

KL divergence is measured with various window 

sizes, ranging from 7   to      pixels, in three 

possible shapes (square, thin, thick ) having 2,2 and 9 

types of offsets respectively.  

    By increasing the window size, it reduces the value 

of KL divergence for a region with a sharp boundary. 

on the other  hand, if a region requires matting, the 

value of the KL divergence increases with the 

window size until it reach the optimum region in the 

sense of the maximum entropy. Therefore, the 

matting region is obtained by the selecting the 

window shape, sizes   with maximum KL 

divergence of the local color distribution. 

 The equation for measuring the KL divergence is 

given by: 

   (     )  ∑ , ( 
  
 

    )     
 ( 

  
 

    )

 ( 
  
 

    )
-

  
    

 

  is uniformly sampled seed point along the 

boundaries 

   and   are the RGB colors of the two end points on 

the line 

 (   ) - is   distance operator 

  By providing the optimum size and shape of the 

detecting window   
  at the best contour point    

 ,  

which is a better localized position of   , we increase 

the local window size to effectively separate the 

foreground and background regions after the 

evaluation of KL divergence with various window 

shapes. Specifically, at the positions    
 , the window 

size increases in 13 different directions and to know 

the whether the control point is a better position of    

we check it using the maximum response of Gaussian 

filter difference. 

  With this procedure, all sampled positions have the 

KL divergences of the possible window shapes and 

sizes. The measured divergences are recorded in form 

of cost volume, and we utilize the dynamic 

programming to maximize the  sum of KL 

divergence along all object boundaries. 

 

Trimap optimization: 

   In the previous section, we described the detection 

of the optimal local windows of the trimap. We 

further refine the trimap by MRF optimization which 

is done by α-expansion.All pixels in the estimated 

regions are assigned to a new labels       *     + 
before all the windows are combined with the 

remaining labels x to constrain the whole image. 

Each α-expansion iteration can be identically 

performed by a series of single graph-cuts similar in 

first phase with slight differences. The MRF equation 

for trimap optimization is defined as: 

 

 (  )    ( 
 )       ( 

 )         ( 
    ) 

 

For modeling geometric terms , three values are taken 

for energy functions, with      for   
   , 0.7 for 

  
   and 0.5 for   

   , and they make  (  
   )  

  (  
   )    (  

   )     to give normalized, 

geometric energies to the graph. Thereby most 

ambiguities are handled in  color models. The main 

difference of color models compared to first phase is 

that the locality of color samples is given by 

normalized x, y coordinate information. To find the 

pixels of the uncertainty areas we use the central 

colors of local line model and build the third GMM 

to infer the label U. The combined trimap after the 

MRF iteration is further refined with simple 

morphology filters to enlarge the unknown regions. 

In comparison, our method selects blended samples 

mostly existing on a transition between two strong 

mean points in a local patch. This selection process 

captures the better mixed colors at sharp edges and 

foreground colors in thin structures. 

 

Matting refinement: 

  To get accurate alpha matte and true foreground 

colors after the estimated trimaps and foreground 

masks, we perform matting refinement  and to solve 

for fractional boundaries only within the uncertainty 

regions. Our matting framework is based on standard 

laplacian matting with additional constraint: 

 

                   (    )
   (    )

   (    )
 (    ) 

 

  is the trimap label as hard constraint.  

W- diagonal matrix 

W=1 pixel belongs to mixed pixels 
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W=0  otherwise 

   =    soft constraint that  guarantees the estimated 

alpha matte resembles the sharpness of first phase 

segmentation 

L matting laplacian matrix 

*      +balance the weights between two constraints 

α is given by computing the smallest eigenvectors of 

the composite matting matrix. 

  To recover the true foreground colors using the 

matte, we use the method of closed form solution to 

natural image matting. We derive the cost function 

from local smoothness assumptions on foreground 

and background colors and show that in resulting 

expression it is possible to analytically eliminate the 

foreground and background colors to obtain quadratic 

cost function of alpha. This allows us to find globally 

optimal alpha matte by solving a sparse linear 

systems of equations which of simple exploits a 

smoothness prior that is used to smoothly generate 

foreground/background color layers by minimizing 

the x,y- directional derivates of the two layers. In the 

presence of two simple color distributions we observe 

that this assumption is particularly correct along the 

boundary pixels. 

The results are shown in figure 3 

 
             input image 

 

 
  Our binary segmentation results in first phase 

 

 
 Our final result after matting refinement 

 

III. CONCLUSION: 

  In this paper we introduced a frame work to extract 

the soft boundaries of the target object from multi-

view images. We utilize coarse 3D reconstruction to 

define an initial volume bounding the foreground 

object. Sequentially, we seek geometrically 

consistent regions having similar appearances across 

all input images. The fisher vector encoding adopted 

in the system allows us to model high fidelity 

appearances in images. The consistent regions are 

cross validated with one another by referring to their 

anchor points in space. To detect the optimal matte 

regions, we optimize the cumulative sum of KL 

divergences to smoothly take matte regions according 

to the contexts of object boundaries. Our Laplacian 

matting equation considers geometrically consistent 

segmentations in enforcing the multi-view constraint 

for the final results.    
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