
SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Special Issue ICRTETM March 2019

ISSN: 2348 – 8549 http://www.internationaljournalssrg.org Page 10

VLSI Implementation of Sauvola and Niblack

Image Thresholding Algorithm using

Stochastic Computing

Dr. R. Manjith
Associate. Professor,

Department of Electronics and Communication Engineering,

Dr. Sivanthi Aditanar College of Engineering,

Tiruchendur.

Abstract

 In document image processing, binarization plays

a significant part especially in degraded document

images. Among various thresholding algorithms,

local image thresholding algorithm plays a better

binarization performance for degraded document

images. However, this algorithm is computationally

sensitive and intensive to the noises from internal

computational circuits. The stochastic logic is a

process which operates on probabilistic signals and it

can cope with errors and uncertainty. The stochastic

computing performs computations with conventional

digital logic gates by using streams of random bits.

This computing is applied to a reconfigurable

architecture that implements processing operations

which can be used for the image processing

application. The fault tolerant architecture is a

reconfigurable architecture as it can compute

different function by setting an approximate value to

constant register, based on stochastic logic. In this

paper, Sauvola and niblack local thresholding

algorithms using stochastic computing are analyzed

and compared for various performances such as

hardware resource utilization, area and threshold

value. Simulation results show the superior

performance of sauvola algorithm for hardware

resource utilization, area and threshold value than

niblack algorithm.

 Key Words - Sauvola, Niblack, Threshold,

Stochastic.

I. INTRODUCTION

 Stochastic computing (SC) is a (re-)emerging

computing technique that was invented for low-cost

alternative to conventional binary computing. It is

unique in that it represents and processes information

in the form of probabilities. More recently, it has been

shown to be useful in important applications such as

image-processing and communications. Document

binarization is the first step in optical character

recognition (OCR) which has been an active study

area in recent years. The binarization can be

performed by a method known as thresholding,

which selects a threshold value and then process

under goes on all pixel intensities above/below this

threshold values are set to 1 (background)/ 0

(foreground) or vice versa. Thresholding algorithms

are widely classified into global and local methods. In

local methods, a threshold value is calculated for each

window which is based on local region but in the

global method a single threshold values are selected

for whole image. Global methods, such as Otsu[1],

are often very fast, and give good results for typical

scanned documents but does not suits the degraded

document images. The global methods tend to

produce marginal noise along the page borders and it

does not suit due to the changes caused by

illumination, complexity in documents and poor

quality of documents. Local methods can solve the

problem of global method by using local information.

Local methods achieve high-quality results on

degraded documents and historical documents [5].

Local method leads to more timing than global

method as the threshold is calculated for each

window. The local methods are applied only to a gray

scale images. This technique is sensitive to

background noises due to large variance in case of a

poor illuminated document. Sauvola method can

somehow tolerate noises in the images due to snow,

rain, or camera shaking as it deals with local pixel

values. However, it is still responsive to the noises

from the internal circuits, such as the noises due to

soft errors, environmental noises, or process, voltage,

and thermal variations. Similar to the other local

thresholding methods, processing time of the Sauvola

thresholding is usually much long [14].

The conventional fault-tolerance techniques, such as

triple modular redundancy (TMR) [7][13], can

increase the fault-tolerance ability but the major

disadvantages are increase the number of hardware

resources and higher power consumption. In order to

solve the problem in the conventional method like

high computation time, increase the number of

hardware resources and higher power consumption

stochastic computing (SC) is used [11]. SC has the

advantage of low cost, can tolerate a very large

number of errors, lower hardware resources and easy

conversion of complex operation into the simple

operation. Since all bits have the same implication in

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Special Issue ICRTETM March 2019

ISSN: 2348 – 8549 http://www.internationaljournalssrg.org Page 11

stochastic representation, a single bit flip in a long bit

stream will result in a small change in the value of the

stochastic numbers than the conventional methods.

And so, stochastic circuits are naturally more fault-

tolerant. In this paper, a high-speed, low-power and

fault-tolerant stochastic architecture for Sauvola

algorithm and Niblack algorithm using SC are

designed and comparison are made between them. To

implement sauvola and niblack algorithm using

stochastic computing, we use a stochastic mean

circuit (SMC), a stochastic standard deviation circuit,

stochastic square root circuit, an XOR gate, and an

AND gate. Section II introduces the background of

stochastic logic. Section III presents stochastic

implementations of Sauvola and Niblack algorithm.

Finally, the simulation results are shown in section

IV.

II. BACKGROUND

A. Stochastic Logic

 A basic feature of SC is that numbers are

represented by bit-streams that can be processed by

very simple circuits, while the numbers themselves

are interpreted as probabilities under both normal and

faulty conditions. For example, a bit-stream S

containing 25% 1s and 75% 0s denotes the number P

= 0.25, reflecting the fact that the probability of

observing a 1 at an arbitrary bit position is P. Neither

the length nor the structure of S need be fixed; for

example, (1,0,0,0), (0,1,0,0), and (0,1,0,0,0,1,0,0) are

all possible representations of 0.25. Note that P

depends on the ratio of 1s to the length of the bit-

stream, not on their positions, which can, in principle,

be chosen randomly. A bit streams of this type and

the probabilities they represent as stochastic numbers.

B. Stochastic Computing

 In SC [14], computations are performed on the

Boolean domain which are are transformed into

probabilistic real domain[11]. Stochastic numbers are

represented by streams of random bits in two

formats[8] as unipolar and bipolar. Bipolar format is

associated with negative numbers directly. For a

given stream length, the precision of the unipolar

format is twice that of the bipolar format[13].The

unipolar representation of stochastic bit streams is

utilized in this paper.

C. Stochastic Operations

 Addition and multiplication: The scaled

addition is used by using simple multiplexer (MUX)

which can replace the normal addition. Similarly the

scaled multiplication is performed by using simple

AND gate for the unipolar format [13].

Stochastic mean circuit (SMC): SMC is used to

average 2n input bit streams, and produces a single

output. It uses a 2n to 1 MUX with n uncorrelated

select bit streams, each one representing the 0.5 value

[14].

Square root: A stochastic square root circuit

presented in [3], two different pulse streams can

represent the same value with a different pattern of

pulses. The circuit is looking for a stochastic pulse

stream that tends to the input stream when multiplied

by itself.

Subtraction: For independent inputs, the XOR gate

performs the function z = x1*(1 − x2) + x2*(1 − x1).

However, when fed with correlated inputs where x1

and x2 have maximum overlap of 1s, the circuit

computes z = |x1 − x2|[12][14].

Image processing is another potential application area

for SC of great practical importance. Many imaging

applications involve functional transformations on the

pixels of an input image [11]. The pixel level

functions are usually simple, but because of the large

number of pixels involved, the overall transformation

process is extremely computation intensive. If these

functions are implemented using SC, then low cost,

highly parallel image processing becomes possible, as

has been demonstrated in a smart SC based image

sensing chip.

D. Fault Tolerance

 Fault tolerance[9] is the property that enables

a system to continue operating properly in the event

of the failure of (or one or more faults within) some

of its components. If its operating quality decreases at

all, the decrease is proportional to the severity of the

failure, as compared to a naively designed system in

which even a small failure can cause total breakdown.

Fault tolerance is particularly sought after in high-

availability or life-critical systems. A fault-tolerant

design enables a system to continue its intended

operation, possibly at a reduced level, rather than

failing completely, when some part of the

system fails.

The advantage of the stochastic architecture[10] in

terms of resources is that it tolerates faults gracefully.

Compare a stochastic encoding to a standard binary

radix encoding, say with M bits representing

fractional values between 0 and 1. Suppose that the

environment is noisy; bit flips occur and these afflict

all the bits with equal probability. With a binary radix

encoding, suppose that the most significant bit of the

data gets flipped. This causes a relative error of (2M-

1)/2M=1/2. In contrast, with a stochastic encoding, the

data are represented as the fractional weight on a bit

stream of length 2M. Thus, a single bit fli

p only changes the input value by 1/2M, which is

small in comparison [9].

III. ALGORITHMS

A. Stochastic Implementation of sauvola algorithm

 For stochastic implementation one have to scale

down all pixel intensities values from [0, 255] to [0,

1] interval. In the Sauvola equation, R is constant

https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/High-availability
https://en.wikipedia.org/wiki/High-availability
https://en.wikipedia.org/wiki/Life-critical_system
https://en.wikipedia.org/wiki/Failure

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Special Issue ICRTETM March 2019

ISSN: 2348 – 8549 http://www.internationaljournalssrg.org Page 12

which is assumed to be 1. The modified Sauvola

equation [14] in stochastic will be

 t (x, y) = m · [1 + 0.5(S − 1)]

 = m · (S + 1)/2

Where m is average value and S is standard deviation

output. The processing on the input pixel values are

performed by using section 2.1. The conversions of

pixel values into stochastic streams are performed by

using randomizer unit. The generation of threshold

streams are performed by using fig.1 consists of

SMC, circular shifter, scaled addition, AND gate,

XOR gate and stochastic square root circuit which is

placed in processing unit. Initially all the pixel values

are converted into the stochastic streams and feeds as

a input to SMC. The SMC produces the average

output. In order to obtain mean(x)2 AND gate is used,

first input of the AND gate is output of SMC and

second input is provided by shifting the SMC output

using circular shifter to offer uncorrelated version of

input. Having mean(x2) and mean(x)2 bit streams, the

next step is to perform scaled subtraction using a

XOR gate. The XOR output is fed as a input to the

stochastic square root circuit. The result of square

root circuit is „S‟ which is the standard deviation

output that is fed as a input to the scaled addition. The

second input of MUX is considered to be „1‟. The

resulting output of the scaled addition and SMC are

provided as input to the AND gate in order to obtain

the threshold bit streams. Next to convert the

stochastic bit streams into the binary bit streams a de

randomizer unit is used. Fig. 1 shows the stochastic

implementation of sauvola thresholding algorithm.

Fig -1: Stochastic implementation of sauvola

thresholding algorithm.

B. Stochastic implementation of niblack algorithm

 Similar to the stochastic implementation of

sauvola algorithm, the niblack algorithm [6] is also

designed to scale down all pixel intensities from [0,

255] to [0, 1] interval. The K value is assumed to be –

0.2 or -0.1 based on the noise present in images. The

new modified Niblack equation for our stochastic

design will be

 t (x, y) = m + k(S) = m - 0.2S

Where m is average value and S is standard deviation

output. The processing on the input pixel values are

performed by using section 2.1. The conversions of

pixel values into stochastic streams are performed by

using randomizer unit. The generation of threshold

streams are performed by using fig.1 consists of

SMC, circular shifter, scaled addition, AND gate,

XOR gate and stochastic square root circuit which is

placed in processing unit. Initially all the pixel values

are converted into the stochastic streams and feeds as

a input to SMC. The SMC produces the average

output. In order to obtain mean(x)2 AND gate is used,

first input of the AND gate is output of SMC and

second input is provided by shifting the SMC output

using circular shifter to offer uncorrelated version of

input. Having mean(x2) and mean(x)2 bit streams, the

next step is to perform scaled subtraction using a

XOR gate. The XOR output is fed as a input to the

stochastic square root circuit. The result of square

root circuit is „S‟ which is the standard deviation

output that is fed as a input to the AND gate. First, we

should do a simple AND gate to convert the s bit

stream to 0.2S. Second, XOR gate for producing the

threshold bit streams of m – 0.2S. Fig. 2 shows the

stochastic implementation of niblack thresholding

algorithm.

Fig -2: Stochastic implementation of niblack

thresholding algorithm.

IV. SIMULATION RESULTS

 In this paper the stochastic implementation of

sauvola and niblack algorithm is implemented by

Verilog using Xilinx 14.5. The comparison is made

between hardware resource utilization, area and

threshold value, by implementing all 16-, 32-, 64-,

128- and 256- bit stream for stochastic architectures.

By using cadence 6.1.5 area is analyzed.

A. Hardware resource utilization comparison

 The stochastic implementation reduces the

hardware resource utilization than conventional

implementation. Table I shows the comparisons of

sauvola and niblack algorithm for hardware resource

utilization, in which the sauvola algorithm have less

hardware resource utilization than niblack algorithm.

Fig 3 & 4 shows the hardware resources utilization

for niblack and sauvola Algorithm.

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Special Issue ICRTETM March 2019

ISSN: 2348 – 8549 http://www.internationaljournalssrg.org Page 13

Table -1: Comparison of hardware resources utilization

for niblack and sauvola algorithm

Res

our

ces

Hardware Resources Utilization

Niblack Algorithm Sauvola Algorithm

16

Bit

s

Str

ea

ms

32

Bit

s

Str

ea

ms

64

Bit

s

Str

ea

ms

12

8

Bit

s

Str

ea

ms

16

Bit

s

Str

ea

ms

32

Bit

s

Str

ea

ms

64

Bit

s

Str

ea

ms

12

8

Bit

s

Str

ea

ms

Reg

iste

r

23 23 23 23 23 23 23 23

LU

T

99 18

0

22

7

54

0

91 19

4

22

3

53

7

Slic

e

66 11

5

16

7

33

6

61 10

7

16

3

34

5

IO 21

5

35

1

61

5

11

35

20

7

34

3

60

7

11

27

BU

FG

2 2 2 2 2 2 2 2

Fig -3: Hardware resources utilization of niblack

algorithm for 128 bit streams

Fig -4: Hardware resources utilization of sauvola

algorithm for 128 bit streams

B. Area comparison

Table 2 shows the comparisons of sauvola and

niblack algorithm for area, in which the sauvola

algorithm have less area than niblack algorithm,

which is analyzed on basis of number of cells. Fig 5

& 6 shows the area of niblack and sauvola algorithm

for 256 input bit streams.

Table -2: Comparison of area for niblack and Sauvola

Algorithm

No. Of

Bit

Streams

Area(Cells)

Niblack

Algorithm

Sauvola

Algorithm

16 31605 31233

32 50869 51614

64 90739 90074

128 168311 168051

256 309486 309299

Fig -5: Area of niblack algorithm for 256 input bit

streams

Fig -6: Area of sauvola algorithm for 256 input bit

streams

C. Threshold value

 Table 3 shows the comparisons of sauvola and

niblack algorithm for threshold value, in which the

sauvola algorithm have better threshold value than

niblack algorithm. Fig 7 & 8 shows the Simulation

waveform of niblack algorithm for 256 input bit

streams. On the basis of probability, the sauvola

algorithm has a threshold value of 0.5 which gives a

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) – Special Issue ICRTETM March 2019

ISSN: 2348 – 8549 http://www.internationaljournalssrg.org Page 14

better performance when compared with niblack

algorithm which has a threshold value of 0.125.

Table -3: Comparison of threshold value for niblack and

sauvola algorithm

No. Of Bit

Streams

Threshold Value

Niblack

Algorithm

Sauvola

Algorithm

16 10000000(1/8) 01010101(4/8)

32 00100000(1/8) 00110010(4/8)

64 00000010(1/8) 01001101(4/8)

128 00000001(1/8) 11100001(4/8)

256 00100000(1/8) 00011101(4/8)

Fig -7: Simulation waveform of Niblack algorithm for

256 input bit streams

Fig -8: Simulation waveform of sauvola algorithm for

256 input bit streams

V. CONCLUSION

Stochastic computing architecture provides a

superior performance compared with the conventional

architecture. In this paper, the niblack and Sauvola

algorithm are implemented using stochastic

computing and analyzed using Xilinx 14.5 for

hardware resource utilization and threshold value, and

cadence 6.1.5 for area. The simulation results show

the superior performance of sauvola algorithm when

compared with niblack algorithm in terms of

hardware resources utilization, area and threshold

value. The simulation results shows that the algorithm

obtains better threshold values for improving the

quality of image. In the future work, the sauvola and

niblack algorithms will be analyzed for delay, power

consumption and area to show the superior

performance of Sauvola than niblack algorithm. The

sauvola algorithm will be analyzed and compared

with other thresholding algorithms for document

images to obtain better performance in terms of

hardware resource utilization, delay, power

consumption, area and threshold value.

REFERENCES

[1] Otsu. N, “A threshold selection method from gray-level

histograms,” IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1,

pp. 62–66, Jan. 1979.

[2] Sauvola. J and Pietikäinen M, “Adaptive document image

binarization,”Pattern Recognit., vol. 33, no. 2, pp. 225–236,

2000.

[3] Toral. S.L, Quero. J.M and Franquelo L.G, “stochastic pulse

coded arithmetic”, May 2000.

[4] Brown. B. D and Card. H. C, “Stochastic neural computation.

I. Computational elements,” IEEE Trans. Comput., vol. 50,

no. 9, pp. 891–905, Sep. 2001.

[5] Shafait. F, Keysers. D, and Breuel. T. M, “Efficient

implementation of local adaptive thresholding techniques

using integral images,” in Proc. 15th Doc. Recognit. Retr.

Conf. (DRR-2008), Part IS&T/SPIE Int. Symp. Electron.

Imag., vol. 6815. San Jose, CA, USA, Jan. 2008.

[6] Khurshid. K, Siddiqi. I, Faure. C, and Vincent. N,

“Comparison of Niblack inspired binarization methods for

ancient documents,” Proc. SPIE, Doc. Recognit. Retr. XVI,

vol. 7247, 2009.

[7] Li. P and Lilja. D. J, “A low power fault-tolerance

architecture for the kernel density estimation based image

segmentation algorithm,” in Proc. IEEE Int.Conf. Appl.-

Specific Syst., Archit. Process. (ASAP), pp. 161–168, Sep.

2011.

[8] Li. P and Lilja. D. J, “Using stochastic computing to

implement digital Image processing algorithms,” in Proc.

IEEE 29th Int. Conf. Comput. Design, pp.154–161, Oct.

2011.

[9] Qian. w, Li. X, Riedel. M. D, Bazargan. K, and Lilja D. J,

“An architecture for fault-tolerant computation with

stochastic logic,” IEEE Trans. Comput., vol. 60, no. 1, pp.

93–105, Jan. 2011.

[10] David J. Lilja, “ A Stochastic Reconfigurable Architecture

for Fault-Tolerant Computation with Sequential Logic” IEEE

30th International Conference on Computer Design

(ICCD)”, pp: 303-308 , 2012.

[11] Alagh. A and Hayes. J. P, “Survey of stochastic computing,”

ACM Trans, Embedded Comput. Syst., vol. 12, no. 2s, pp. 1–

19, 2013.

[12] Alaghi. A, Li. C, and Hayes. J. P, “Stochastic circuits for real-

time image-processing applications,” in Proc. 50th

ACM/EDAC/IEEE Design Autom.Conf. (DAC), pp. 1–6,

May/Jun. 2013.

[13] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel,

“Computation on stochastic bit streams digital image

processing case studies,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462, Mar. 2014.

[14] Hassan Najafi. M and Mostafa Salehi. E “A Fast Fault-

Tolerant Architecture for Sauvola Local Image Thresholding

Algorithm Using Stochastic Computing” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., 2015.

http://www.computer.org/web/search?cs_search_action=advancedsearch&searchOperation=exact&search-options=dl&searchText=David%20J.+Lilja

