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Abstract — Compressed sensing is an emerging technique 

where the signal is compressed at the time of acquisition. The 

compressed signals can be represented in time domain or 

transform domain. This technique basically implements 

efficient acquisition and reconstruction of a signal from fewer 

no. of measurements .CS exploits sparsity where many 

coefficients of the signal of interest expressed in some domain 

are equated to zero. With the help of basis, frames and 

dictionaries a signal can be expressed in sparse form. CS 

enables sampling at a rate which is much  lesser than Nyquist 

sampling rate and signal can be recovered from compressed 

measurements. 

This paper deals with the detailed review of existing 

literatures in effective acquisition, reconstruction of the 

signal, techniques to solve inverse scattering problem 

and various applications of CS in several fields such as 

biomedical applications, communication systems, video 

processing and so on. 

  

Index Terms — Compressed Sensing, Sparsity ,CS 

acquisition techniques, Recovery algorithms ,Inverse 

Scattering problem,CS applications  

 

INTRODUCTION 

       According to  Shanon’s  theorem , any signal can 

be reconstructed from its samples provided it is 

sampled at a rate greater than or equal to two times the 

maximum frequency of the signal. In the conventional 

method of sampling more no. of samples are required 

and most of them are discarded at the time of recovery. 

CS provides a simplified methodology by taking fewer 

no. of   measurements, implementing compression of 

signal by finding out  all the samples’ coefficients, 

taking  only the higher coefficients into consideration 

rejecting the lower coefficients  for storage and 

transmission. Compressed sensing implements 

reconstruction of a compressed version of signal by 

taking only few amount of linear and non-adaptive 

measurements. 

 

            The most important aspect of CS technique is 

use of efficient algorithms for reconstruction of under 

sampled signal. 

CS deploys an underdetermined system of 

measurements having infinitely many solutions which 

focused on Non-deterministic Polynomial-time 

hard(NP-hard) problem. Proper measurement matrices 

are to be taken into consideration.                

I. SIGNAL ACQUISITION AND 

RECONSTRUCTION   MODEL 

Few non-adaptive random measurements are taken in 

compressed sensing schemes. Acquisition model of 

Compressed sensing comprises of  the input signal x € 

R
n
 of length n  ,φ € R

mxn
 is an mxn measurement matrix 

and y €R
m 

 is a measurement vector having length m. 

The compressive measurements are found out by 

multiplying the input signal with the random 

measurement matrix. The no. of measurements taken 

here is less than the length of the signal .i.e m<<n.  

 

       y=φx                                                             (1) 

 

   The measurement vector y and reconstruction 

matrix i..e A=.φψ €R 
mxn

 where ψ is the sparse basis 

function of the signal x are taken as inputs to  the 

reconstruction model. The signal x can be expressed as  

       x=ψs                                                              (2) 

where   s €R
n
 is a sparse vector of length n,having 

lesser  no. of non-zero entries. The signal of interest can 

be reconstructed by solving equation (1) which is an 

undetermined system of linear equations that leads to 

infinite no. of possible solutions. We can attain an 

exclusive solution by taking ℓ0 optimization problem 

wherein all possible combinations can be tried for 

getting solution which is very tedious. Various types 

signal recovery algorithms implementing ℓ1 norms and 

other relevant norms   are discussed in this paper so as 

to get an estimate of sparse representation of x [1]. For 

perfect reconstruction of signal, restricted isometric 

propery(RIP) and  

incoherence property should be satisfied. 
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II. MEASUREMENT MATRICES IN 

COMPRESSED  SENSING 

          An appropriate measurement matrix φ should be 

selected for successful implementation of CS. The most 

commonly used random matrices used in CS are 

Gaussian or Bernoulli, partial Fourier matrics and so 

on. Though the probability of reconstruction is high so 

far as usage of random matrices is concerned, they too 

have demerits. Lot of storage will be needed in case 

such matrices are used. 

There is no such effective algorithm where RIP 

condition can be verified for these matrices. 

Deterministic matrices satisfy RIP as well as coherence 

properties. The advantages of deterministic matrices 

include less storage requirement, simple sampling and 

recovery processes. For an accurate and efficient signal 

recovery ,deterministic matrices can be used provided 

some a priori information about location of non-zero 

elements are known. The no. of measurements required 

for several measurement matrices for perfect recovery 

is given in the table1 

where k is the sparsity of vector s, µ is the relation of 

coherence between any two elements in a given pair of 

matrices φ and ψ 

,m is the no. of measurements ,n is the length of the 

input signal 

and c is a positive constant.[2] 

 

TABLE 1 No. of Measurements required for 

different types of Matrices 

 

Type of Matrix No. of measurements 

required  

Gaussian and Bernouli m>=ck log n/k 

Paartial Fourier  m>=c µk(log n)
4
 

Any other matrix m= O(k log n) 

Deterministic m= O(k
2
log n) 

III. CS ACQUISITION   TECHNIQUES 

The main requirement of CS is proper recovery of 

signal. The measurements must be taken randomly. To 

meet this requirement, different techniques have been 

proposed. This section discusses the operating 

principles of these acquisition techniques. 

A. RANDOM DEMODULATOR 

Random demodulator otherwise known as analog to 

information converter (AIC), is an efficient wideband 

signal sampler. Here the input signal is first multiplied 

with a chipping sequence(pseudorandom code). Then 

the signal is convolved in frequency domain and the 

signal frequency is spread to low frequency regions. 

Then an integrator acting as low pass filter is  

implemented to attain a unique frequency signature of 

signal in low frequency region .The original signal 

information is carried with the help of frequency 

signature which in turn helps in recovering  the original 

signal  from compressed  measurements. (1) 

 

B. RANDOM FILTERING 

     This technique convolves the input signal with the 

finite impulse response filter h. The filtered signal can 

be taken into consideration for getting compressive 

measurements. 

 

C. RANDOM CONVOLUTION 
   In this approach, the measurement matrix’s first 

row is filled with random values. Then the next row is 

obtained by performing circular shift operation  of  the 

previous row. This process is repeated for the rest of the 

rows untill the measurement matrix is formed. The 

measurement vector Y is generated by convolving the 

measurement matrix and the i/p signal. The matrix 

formed his a structured matrix. The benefits of using 

such matrix is faster procurement, easy to store and 

communication.[3] 

 

IV. CS RECONSTRUCTION STRATEGIES 

    CS reconstruction algorithms basically deal with 

sparse representation of original input signal from 

compressive measurements,  represented in some 

appropriate basis function or dictionary[4]. In this 

section some of the reconstruction approaches are 

discussed.  

 

A. CONVEX OPTIMIZATION TECHNIQUE 

  This method treats the compressed sensing based 

recovery strategy as convex optimization problem that 

is going to be solved by implementing solver with the 

help of linear programming. The convex designs are 

applied to attain sparsity of the signal of interest. 

 

1) BASIC PURSUIT  

Basic pursuit is one of the convex optimization 

techniques, which is possibly  solved using minimum l1 

norm , 

            

    ^  

 S  = arg min ||s||1   subject to Ѳs=y                   (3) 

 

Basic pursuit algorithm is used in compressed sensing 

to obtain  the sparse estimate of input signal x in 

dictionary or matrix Ѳ from minimum no.of 

measurements of y. BP is implemented for recovery of 

the signal if the compressed measurements are noise-

free. 

 

2) BASIS PURSUIT DENOISING (BPDN) 

BPDN accounts for the noise in dimension from the 

solution having minimum l1 norm provided relaxed 

condition on constraint is satisfied. 
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^ 

       S  = arg min ||s||1 subject to 1/2(||y-Ѳs|2
2
 ≤€     (4) 

                   s 

        where l2 is known as Euclidian norm ,which 

represents  

         the length of a vector [6] 

 

3) SOLVERS FOR CONVEX OPTIMIZATION 

PROBLEM 

      Optimization problems can be resolved with the 

help of solvers. 

   The solution to Basic Pursuit problem can be 

obtained by using  BP-simplex, interior point algorithm 

.In simplex algorithm, all probable solutions can be 

attained by constructing a polyhedron. Fixed point 

continuation(FPC) ,gradient projection for sparse 

representation (GPSR),Bregman iteration and so on [7] 

can also be used for convex optimization approach. 

             In BP simplex algorithm, a set of n columns 

which are linearly independent is chosen from 

dictionary. Then a column in basis is interchanged with 

a column not in basis that provides considerable 

improvement in objective function. The steps are 

repeated until no further improvement is possible. 

Finally the best possible solution is obtained .  

              In BP interior algorithm, an initial  non-sparse 

solution solution is found out. Then sparsity is 

transformed and the solution is moved  into the simplex 

zone.This procedure is repeated  until a solution of  

sufficient no. of  non-zero entries is reached. This sort 

of result is known as vertex simplex.[8]                                                                                              

             Both FPC and GPSR deal with the solution to  

the unconstrained     formulation of l1 minimization 

problem.  

 

B. GREEDY APPROACH 

Greedy approach is an iteration method. 

In every step, the solution is upgraded by choosing 

those columns of the reconstruction matrix which are 

highly corelated with the compressed measurements.  

These columns are called atoms. Atoms selected once 

are not included in further iterative steps. This method 

minimizes the computational complication of the 

algorithm and increases the execution speed[9],[10]. 

The following algorithms are the two types of the 

Greedy approach algorithms. 

 

1)  SERIAL GREEDY ALGORITHMS 

   Matching pursuit(MP),orthogonal matching 

pursuit(OMP) and gradient Pursuit(GP) are the 

examples of serial greedy algorithms. The fundamental  

steps of these algorithms are shown below.  

 
 

 

  Fig 1. Flow chart for serial greedy algorithms 

 

 

2) PARALLEL GREEDY ALGORITHMS 

 

    Compressive sampling matching pursuit 

(CoSaMP) and subspace pursuit(SP) can be categorized 

as parallel greedy algorithms. k atoms or multiple of k 

atoms  are chosen at the same time from the 

reconstruction/recovery matrix .Hence they are named 

as parallel greedy algorithms. The residual steps are 

similar to serial greedy algorithms. These algorithms 

are more accurate than serial algorithms. The wrong 

atoms can be dropped if at all selected during iterations. 

 

 

C. THRESHOLDING APPROACH 

In this approach, k atoms of reconstruction matrix are 

chosen at same time. Here thresholding technique is 

used to upgrade the solution set Si .The remaining  

steps are similar to greedy algorithms. Approximate 

Message Passing(AMP) deploys this approach. The 

steps followed in this technique are shown below. 
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Figure 2.Flowchart for AMP algorithm 

 

 

D. COMBINATORIAL APPROACH  

Random Fourier Sampling, chaining pursuits and sparse 

sequential pursuit algorithms use this technique. A 

specific measurement pattern is generated in such type 

of approach.. The measurement  matrix ф is constructed 

with the help of  certain discrete valued functions.Each 

measurement yi  is generated by the combination of 

equal no. of samples of the given i/p signal [11]. The 

steps of this algorithm are described below. 

          

 
 

Figure 3.Flowchart for steps involved in combinatorial 

approach 

 

 

E. NON-CONVEX APPROACH 

 This approach uses lesser no. of measurements than 

convex optimization technique. Here instead of l1 norm 

,lp  norm is used where  0<p<1. [12]. 

 

F. BAYESIAN APPROACH 

 This method is meant for deterministic input signals. 

Maximum likelihood estimate or maximum a posteriori 

estimate is used to find out input signal coefficients. 

Reconstruction error is not taken into consideration 

here. 

Table 2 A brief Comparison of CS recovery 

techniques 

  

Approach Characteri

stics 

Benefits Drawback

s 

Convex Minimizati

on of l1 

norm to 

obtain a 

solution 

Noise 

Robustnes

s 

Slow,comp

lex 

  Correlatio

n based 

iteration 

method 

Faster,less 

complex,pr

one to 

noise 

Prior 

informatio

n of signal 

sparsity is 

required 

Convergen

ce issues 

Thresholdi

ng 

Exploits 

thresholdin

g criteria 

to select 

atoms 

Able to 

add/remov

e multiple 

entries per 

iteration 

Adaptive  

step size is  

taken for 

performan

ce 

improvem

ent. 

Combinato

rial 

Computes 

min or 

median of 

measureme

nts 

Faster and 

simpler 

Needs a 

specific 

pattern in 

measurem

ent 

Non-

Convex 

Minimizati

on of lp 

norm to 

obtain a 

solution 

Recovers 

from fewer 

measurem

ents than l1 

counterpar

t 

Slower, 

complex 

Bayesian Used for 

recovery of 

signals 

with 

known 

probability 

distributio

n 

Faster and 

provides 

more 

sparser 

solution 

High 

computati

onal cost 
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V.POTENTIAL AREAS OF APLLICATIONS OF 

COMPRESSED SENSING 

 

CS field is growing in leaps and bounds and is 

implemented in various areas. Some of the major areas 

where hhhhCS can be deployed are discussed below. 

 

A. IMAGE PROCESSING USING COMPRESSED 

SENSING 

CS techniques can be used in image acquisition. It can 

be used in single pixel cameras and radar imaging 

systems. CS can also be applied in parallel imaging, 

microwave imaging and under water imaging too [14] 

[15]. 

 

B. BIOMEDICAL APPLICATIONS 

CS can be applied in the field of biomedical imaging. 

CS theory  

can also be implemented in processing biological 

signals like ECG, EEG ,ENG and so on by exploiting 

sparsity. This technique can also be applied in DNA 

micro arrays ,study of proteins and so on [16],[17] . 

 

C. COMMUNICATION SYSTEMS 

CS theory has wide range of applications in 

communication systems. Data acquisition for wireless 

sensor network is done by implementing data 

compressibility. In wireless body area networks ,tele 

health monitoring system, compressed sensing is used . 

With respect to IoT, CS can also be implemented in IoT 

[18]. 

 

 CS can be applied in antenna array so that no. of array 

elements can be minimized and background 

noise/interference can be reduced. 

 

D. PATTERN RECOGNITION 

CS can be utilized in face recognition and speech 

recognition techniques from missing data by exploiting 

sparsity [19]. 

 

E. VIDEO PROCESSING 

Compressive sensing techniques can be implemented 

for 3D video acquisition and processing using 

distributed video sensing , adaptive video sensing and 

so on. [20]. 

 

F. SPEECH PROCESSING 

 CS has wide range of applications in speech 

processing. This technique can be deployed in 

differentiating voiced and unvoiced speeches. CS can 

be implemented in speech enhancement, ocean sound 

monitoring and so on[21]. 

 

 

 

G. VLSI APPLICATIONS 

In VLSI domain also CS techniques can be deployed. 

Nano scale ICs can be modelled and designed 

exploiting sparsity. CS can also be implemented in low 

cost silicon nano scale integrated circuits and so on[22]. 

 

VI. CONCLUSION 

 Exploitation of CS has transformed many zones in 

signal processing. Some of the major applications 

include improved MRI , superior quality image and 

video procurement with the usage of  single pixel 

camera ,acquiring ultra  wideband signals etc . In CS 

based sparsity technique, a signal can be simultaneously 

sampled and compressed. In this  paper, a organized 

review of compressed sensing techniques and its 

applications are discussed. Various acquisition and 

recovery schemes based on compressed sensing are also 

conferred in this paper. Many CS techniques deploy the 

most suitable sensing matrix or sparse dictionary. 

However,CS is relatively a new technique which can 

further be improved by optimizing the reconstruction 

quality. 
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