On Fuzzy b[#] Closed sets

Indhumathi.P¹

¹M.sc Mathematics Avinashilingam (Deemed to be) University, Coimbatore, Tamilnadu, India.

Abstract: In this paper, we have introduced a new class of fuzzy sets called fuzzy b[#] closed sets, and investigated some of their properties. Some characterizations of the fuzzy b[#] closed sets are also studied.

Keywords: Fuzzy sets, fuzzy topology, fuzzy b closed sets, fuzzy $b^{\#}$ closed sets.

1.Introduction

The concept of fuzzy sets and fuzzy set operations were introduced by L.A.Zadeh[13]. In 1968, C.L.Chang[5] introduced the concept of fuzzy topological space which is a generalization of topological spaces. In this paper we have introduced a new type of fuzzy closed set called fuzzy b[#]closed sets and investigated some of their properties.

2.Preliminaries

Definition 2.1: [13] Let X be a non-empty set . A fuzzy set A in X is characterized by its membership function $\mu_A : X \rightarrow [0,1]$ and $\mu_A(x)$ is interpreted as the degree of member of element x in a fuzzy set A, for each $x \in X$. It is clear that A is determined by the set of tuples of $A = \{(x, \mu_A(x)) : x \in X\}$.

Definition 2.2: [13] Let $A = \{(x,\mu_A(x)) : x \in X\}$ and $B = \{(x,\mu_B(x)) : x \in X\}$ be two fuzzy sets. Then, their union $A \lor B$, intersection $A \land B$ and the complement A^c are also fuzzy sets with membership functions defined as follows :

- (a) $\mu_{A}^{c}(x) = 1 \mu_{A}(x), \forall x \in X,$
- (b) $\mu_{A \lor B}(x) = \max{\{\mu_A(x), \mu_B(x)\}}, \forall x \in X,$
- (c) $\mu_{A \wedge B}(x) = \min \{\mu_A(x), \mu_B(x)\}, \forall x \in X.$ Further,
- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$, $\forall x \in X$,
- (b) A = B if and only if $\mu_A(x) = \mu_B(x) , \forall x \in X$.

Definition 2.3: [8] A family τ of fuzzy sets is called fuzzy topology (FT in short) for X if it satisfies the three axioms:

- (a) $\overline{0}, \overline{1} \in \tau$
- (b) $\forall A, B \in \tau \Rightarrow A \land B \in \tau$
- (c) $\forall (A_j)_{j \in J} \in \tau \Rightarrow \bigvee_{j \in J} A_j \in \tau$

The pair (X, τ) is called a fuzzy topological space (FTS). The elements of τ are called fuzzy open sets (FOS) in X and their respective complements are called fuzzy closed sets (FCS) of (X, τ) .

Jayanthi. D^2

²Assistant Professor of Mathematics Avinashilingam (Deemed to be)University, Coimbatore, Tamilnadu, India.

Definition 2.4: [2] A fuzzy set A in a fuzzy topological space (X, τ) is said to be a

- (a) Fuzzy b closed set (FbCS) if int(cl(A)) ∧ cl(int(A)) ≤ A
- (b) Fuzzy b open set (FbOS) if $A \le int(cl(A)) \lor cl(int(A))$

Definition 2.5: [3] Let A be a fuzzy set in a fuzzy topological space X. Then we define b-interior and b-closure as

(a) b-cl(A) = \land { B: B \geq A, B is fuzzy b closed in X }

(b) b-int(A)= V {B: $B \le A$, B is fuzzy b open in X }

Definition 2.8: [12] A Fuzzy set A in a FTS (X, τ) is called fuzzy nowhere dense if there exists no non-zero fuzzy open set B in (X, τ) such that B < cl(A) that is int(cl(A)) = $\overline{0}$.

Definition 2.10: [9] A fuzzy set A is quasicoincident with a fuzzy set B, denoted by A_qB , if there exists $x \in X$ such that A(x)+B(x) > 1.

Definition 2.11: [9] If A and B are not quasicoincident, then we write $A_{\bar{q}}B$. A

 $\leq B \iff A_{\bar{q}}(1-B).$ Definition 2 12: [10] A fuzzy

Definition 2.12: [10] A fuzzy point \tilde{p} in a set X is also a fuzzy set with membership function:

$$\mu_{\widetilde{p}}(x) = \begin{cases} r, & \text{for } x = y \\ 0, & \text{for } x \neq y \end{cases}$$

where $x \in X$ and $0 < r \le 1$, y is called the support of \tilde{p} and r, the value of \tilde{p} . We denote this fuzzy point by x_r or \tilde{p} . A fuzzy point x_r is said to be belonged to a fuzzy subset \tilde{A} in X, denoted by $x_r \in \tilde{A}$ if and only if $r \le \mu_{\chi}(x)$.

3.FUZZY b[#] CLOSED SETS

In this section we have introduced fuzzy $b^{\#}$ closed sets and studied some of their properties. **Definition 3.1:** A fuzzy set A in a FTS (X, τ) is said to be a fuzzy $b^{\#}$ closed set ($Eb^{\#}CS$) if int(cl(A))

said to be a fuzzy $b^{\#}closed$ set (Fb[#]CS) if int(cl(A)) \wedge cl(int(A)) = A. The family of all Fb[#]CSs of a FTS (X, τ) is

The family of all Fb CSs of a F1S (X, τ) is denoted by Fb[#]C(X).

Example 3.2: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.3_a, 0.3_b) \rangle$, $G_2 = \langle x, (0.5_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.5_a, 0.5_b) \rangle$ be a fuzzy set in (X, τ). Now int(cl(A)) \land cl(int(A)) = $G_2 \land G_2^c = A$. Then A is a Fb[#]CS in X.

Remark 3.3: Every FCS and every Fb[#]CS are independent to each other in general.

Example 3.4: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X where $G_1 = \langle x, (0.4_a, 0.5_b) \rangle$ and $G_2 = \langle x, (0.3_a, 0.3_b) \rangle$. Then (X, τ) is a FTS. Here A $= \langle x, (0.4_a, 0.5_b) \rangle$ is a Fb[#]CS as int(cl(A)) \land cl(int(A)) = $G_1 \land G_1^c = A$ but not a FCS in X as cl(A) = $G_1^c \neq A$.

Example 3.5: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 =$

 $\langle x, (0.5_{a}, 0.5_{b}) \rangle$, $G_{2} = \langle x, (0.4_{a}, 0.4_{b}) \rangle$. Then (X, τ) is a FTS. Here A = $\langle x, (0.6_{a}, 0.6_{b}) \rangle$ is a FCS as cl(A) = $G_{2}^{c} = A$ but not a Fb[#]CS in X as int(cl(A)) \wedge cl(int(A)) = $G_{1} \neq$ A.

Theorem 3.6: Every $Fb^{\#}CS$ is a FbCS in (X, τ) but not conversely in general.

Proof: Let A be a Fb[#]CS in X, then $int(cl(A)) \land cl(int(A)) = A$. Now as $A \le A$, $int(cl(A)) \land cl(int(A)) \le A$. Therefore A is a FbCS in (χ, τ) .

Example 3.7: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.5_a, 0.4_b) \rangle$, $G_2 = \langle x, (0.6_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Let $A = \langle x, (0.5_a, 0.6_b) \rangle$ be a fuzzy set in (X, τ). Now int(cl(A) \land cl(int(A)) = $G_1 \leq A$. Therefore A is a FbCS but not a Fb[#]CS in X as int(cl(A) \land cl(int(A)) $\neq A$.

Remark 3.8: As per the above Theorem 3.6 and Example 3.7, Fb[#]CS is stronger than FbCS in X.

Theorem 3.9: Every FRCS [11] and every Fb[#]CS are independent to each other in general.

Example 3.10: Let X = {a, b} and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.5_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.4_a, 0.3_b) \rangle$. Then (X, τ) is a FTS. Here A = $\langle x, (0.5_a, 0.6_b) \rangle$ is a Fb[#]CS in X but not a FRCS in X as cl(int(A)) = $G_2^c \neq A$.

Example 3.11: Let X = {a, b} and $\tau = {\overline{0}, \overline{1}, G_{1,} G_{2}}$ be a FT on X, where $G_{1} = \langle x, (0.5_{a}, 0.3_{b}) \rangle, G_{2} = \langle x, (0.5_{a}, 0.6_{b}) \rangle$. Then (X,

(i) $(0.5_{a}, 0.5_{b})$, $0_{2} = (0, (0.5_{a}, 0.5_{b}))$. Then (1, 7) is a FTS. (i) $(0.5_{a}, 0.4_{b})$ is a FDCS in X as a l(int(A))

 $\langle x, (0.5_a, 0.4_b) \rangle$ is a FRCS in X as $cl(int(A)) = G_2^c = A$ but not a $Fb^{\#}CS$ in X as $int(cl(A)) \land cl(int(A)) = G_1 \neq A$.

Theorem 3.12: Every FPCS [7] and every Fb[#]CS are independent to each other in general.

In the following diagram we have provided the relation between various types of fuzzy closedness.

Example 3.13: In Example 3.10, $A = \langle x, (0.5a, 0.6b) \text{ is a Fb}^{\#}CS \text{ in } X \text{ but not a FPCS in } X \text{ as cl(int(A))} = G_2^{\ c} \leq A.$

Example 3.14: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_{1,} G_{2}\}$ be a FT on X, where $G_{1} =$

 $\langle x, (0.5_a, 0.6_b) \rangle, G_2 = \langle x, (0.4_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Here A = $\langle x, (0.6_a, 0.5_b) \rangle$ is a FPCS in X as $cl(int(A)) = G_2^c$ $\leq A$ but not a Fb[#]CS in X as $int(cl(A)) \land cl(int(A))$ $= G_2 \neq A$.

Theorem 3.15: Every Fb[#]CS is a FSCS [1] in (X, τ) but not conversely in general.

Proof: Let A be a $Fb^{\#}CS$ in X, then $int(cl(A)) \land cl(int(A)) = A$. Now as $A \leq A$, $int(cl(A)) = int(cl(int(cl(A)))) \land cl(int(A)) \leq int(cl(cl(A))) \land cl(int(A)) \leq int(cl(A)) \land cl(cl(int(A))) = A$. Hence A is a FSCS in (X, τ).

Example 3.16: Let $X = \{a,b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $G_1 = \langle x, (0.4_a, 0.3_b) \rangle$, $G_2 = \langle x, (0.5_a, 0.4_b) \rangle$. Then (X, τ) is a FTS. Here the fuzzy set $A = \langle x, (0.5_a, 0.6_b) \rangle$ is a FSCS as int(cl(A)) = $G_2 \leq A$ but not a Fb[#]CS in X as int(cl(A)) \land cl(int(A)) = G_2 \neq A.

Theorem 3.17: Every F α CS [6] and every F $b^{\#}$ CS are independent to each other in general.

Example 3.18: In Example 3.10, $A = \langle x, (0.5a, 0.6b) \text{ is a Fb}^{\#}CS \text{ in } X \text{ but not a } F\alpha CS \text{ in } X \text{ as } cl(int(cl(A))) = G_2^{c} \leq A.$

Example 3.19: Let $X = \{a, b\}$ and $\tau = \{\overline{0}, \overline{1}, G_1, G_2\}$ be a FT on X, where $\langle x, (0.5_a, 0.4_b) \rangle$, $G_2 = \langle x, (0.6_a, 0.5_b) \rangle$. Then (X, τ) is a FTS. Here the fuzzy set A $= \langle x, (0.5_a, 0.6_b) \rangle$ is a F α CS in X as cl(int(cl(A)))

 $= G_1^{c} \le A \text{ but not a } Fb^{\#}CS \text{ in } X \text{ as } int(cl(A)) \land cl(int(A)) = G_1 \neq A.$

Theorem 3.20: Every $Fb^{\#}CS$ is a $F\beta CS$ [4] in (X, τ) but not conversely in general.

Proof: Let A be a $Fb^{\#}CS$ in X, then $int(cl(A)) \land cl(int(A)) = A$. Now $int(cl(int(A))) = int(cl(int(A))) \land cl(int(A)) \le int(cl(A)) \land cl(int(A)) = A$. We have $int(cl(int(A))) \le A$. Hence A is a F β CS in (X, τ) .

Example 3.21: In example 3.14, $A = \langle x, (0.6_a, 0.5_b) \rangle$ is a F β CS in X but not a Fb[#]CS as int(cl(A)) \wedge cl(int(A)) \neq A.

Theorem 3.22: If A is both a FROS and a FRCS then A is a $Fb^{\#}CS$ in (X, τ) .

Proof: Let A be both a FROS and a FRCS in (X, τ) . Then $int(cl(A)) \land cl(int(A)) = A \land A = A$. This implies A is a Fb[#]CS in (X, τ) .

Theorem 3.23: If A is both a FOS and a FCS then A is a $Fb^{\#}CS$ in (X, τ) .

Proof: Let A be both a FOS and a FCS in (X, τ) . Then $int(cl(A)) \land cl(int(A)) = int(A) \land cl(A) = int(A) = A$. Therefore A is a Fb[#]CS in (X, τ) .

Theorem 3.24: For a FS A in (X, τ) , the following are equivalent:

(i) A is both a FOS and a $Fb^{\#}CS$.

(ii) A is a FROS.

Proof:(i) \Rightarrow (ii) Let A be a FOS and a Fb[#]CS in X. Then A = int(cl(A)) \land cl(int(A)) = int(cl(A)) \land cl(A) = int(cl(A)). Hence A is a FROS in X.

(ii) \Rightarrow (i) Let A be a FROS in X. Then A = int(cl(A)). Since every FROS is a FOS, A is a FOS in X. Therefore int(cl(A)) \land cl(int(A)) = A \land cl(int(A)) = A \land cl(A) = A. Hence A is a Fb[#]CS in X.

Theorem 3.25: For a $Fb^{\#}CS$ A in a FTS (X, τ), the following conditions hold:

(i) If A is a FROS then scl(A) is a Fb[#]CS

(ii) If A is a FRCS then sint(A) is a Fb[#]CS

Proof:(i) Let A be a FROS in (X, τ) . Then int(cl(A)) = A. By definition we have scl(A) = A \lor int(cl(A)) = A. Since A is a Fb[#]CS in X, scl(A) is a Fb[#]CS in X.

(ii) Let A be a FRCS in (X, τ) . Then cl(int(A)) = A. By definition we have $sint(A) = A \land cl(int(A)) = A$. since A is a Fb[#]CS in X, sint(A) is a Fb[#]CS in X.

Theorem 3.26: If A is both a Fb[#]CS and a FCS then A is a FOS in (X, τ) .

Proof: Let A be a $Fb^{\#}CS$ and a FCS. Then A = $int(cl(A)) \land cl(int(A))$. Now A = $int(cl(A)) \land cl(int(A)) = int(A) \land cl(int(A)) = int(A)$. Hence A is a FOS in X.

Theorem 3.27: Let A be a Fb[#]CS in (X, τ) and $\mu_{\widetilde{p}}(x)$ be a fuzzy point such that $\mu_{\widetilde{p}}(x)_q(cl(int(A)) \land int(cl(A)))$. Then $cl(\mu_{\widetilde{p}}(x))_q A$.

Proof: Assume that A is a Fb[#]CS in (X, τ) and $\mu_{\widetilde{p}}$ (x)_q(cl(int(A)) \land int(cl(A)). Suppose that $cl(\mu_{\widetilde{p}}(x))_{\overline{q}}A$, then $A \leq (cl(\mu_{\widetilde{p}}(x)))^{c}$ where $(cl(\mu_{\widetilde{p}}(x)))^{c}$ is a FOS in (X, τ). Then by hypothesis, $A = cl(int(A)) \land int(cl(A)) \leq (cl(\mu_{\widetilde{p}}(x)))^{c} = int(\mu_{\widetilde{p}}(x))^{c} \leq (\mu_{\widetilde{p}}(x))^{c}$. Therefore $(cl(int(A)) \land int(cl(A))q(\mu p(x)))$, which is a contradiction to the hypothesis. Hence $cl(\mu_{\widetilde{p}}(x))_{q}A$.

4.FUZZY b[#] OPEN SETS

In this section we have introduced a new type of fuzzy open set called fuzzy $b^{\#}$ open sets and studied some of its properties.

Definition 4.1 :The complement A^c of a $Fb^{\#}CS A$ in a FTS (X, τ) is called a fuzzy $b^{\#}$ open set (Fb[#]OS in short) in X.

The family of all $Fb^{\#}OSs$ of a FTS (X, τ) is denoted by $Fb^{\#}O(X)$.

Example 4.2: In example 3.2, let $A = \langle x, (0.5a, 0.5b) \rangle$ be a FS in (X, τ) . Now $cl(int(A^c)) \wedge int(cl(A^c)) = G_2 = A$, where G_2 is a FOS in X. This implies that A^c is a Fb[#]CS in X. Hence A is a Fb[#]OS in X.

Theorem 4.3: Every $Fb^{\#}OS$ are FbOS, FSOS, F βOS but not conversely in general.

Proof: Straight forward.

Example 4.4: Obvious from Example 3.7, Example 3.16, Example 3.21 by taking complement of A in the respective examples.

Theorem 4.5: Every FOS, FROS, FPOS, F α OS and every Fb[#]OS in (X, τ) are independent to each other in general.

Example 4.6: Obvious from Example 3.4 and Example 3.5, Example 3.10 and Example 3.11, Example 3.13 and Example 3.14, Example 3.18 and Example 3.19, by taking complement of A in the respective examples.

Theorem 4.7: If A is $b^{\#}$ -open and nowhere dense then A is regular open in (X, τ) .

FRCS

Proof: Let A is $b^{\#}$ -open and nowhere dense. Then A = int(cl(A)) \lor cl(int(A)) = $\overline{0} \lor$ cl(int(A)) = cl(int(A)). Therefore cl(int(A)) = A. Hence A is regular open.

Theorem 4.8: If A is both a Fb[#]OS and a FOS then A is a FCS in (X, τ) .

Proof: Let A be a $Fb^{\#}OS$ and a FOS. Then A = $int(cl(A)) \lor cl(int(A))$. Now A = $int(cl(A)) \lor cl(int(A)) = int(cl(A) \lor cl(A) = cl(A)$. Hence A is a FCS.

Theorem 4.9: If A is both a Fb[#]OS and a FSCS then A is a FCS in (X, τ) .

Proof: Let A be a Fb[#]OS and a FSCS. Then A = $int(cl(A)) \lor cl(int(A))$. Now A = $int(cl(A)) \lor cl(int(A)) \le A \lor cl(int(A)) \le A \lor cl(A) \le cl(A)$. Therefore A = cl(A). Hence A is FCS.

Theorem 4.10: Let A be a Fb[#]OS in a FTS in X such that Int $A = \overline{0}$, then A is a FPOS in X.

Proof: Let A be a Fb[#]OS in X. Then $A \le int(cl(A))$ $\lor cl(int(A)) \le int(cl(A)) \lor \overline{0} \le int(cl(A))$. Hence A is a FPOS in X.

References

 Azad. K. K., On fuzzy semi - continuity, Fuzzy Almost continuity and Fuzzy weakly continuity, J. Math. Anal.Appl, 1981, pp.14-32.

- [2] Benchalli. S. S., and Jenifer J. Karnel, On Fuzzy b-open Sets in Fuzzy Topological Spaces, J. Comp. & Math.Sci., 2010, pp.127 – 134.
- [3] Benchalli. S. S., and Jenifer J. Karnel, On fbg-Closed sets and fb-Seperation Axioms in Fuzzy Topological spaces, 2011, pp. 2547-2559.
- [4] Benchalli. S. S., and Wali. R. S., On RW-closed Sets in Topological Spaces, Bull. Malays. Sci. Soc., 2007, pp.99-110.
- [5] Chang. L., Fuzzy topological spaces, J. Math.Aval. Appl., 1968, pp.182-190.
- [6] Mashhour, A. S., Eadb. M, EI-Monsef and EI-deeb. S. N, On precontinuous and weak precontinuous mappings, Proc, Math. Phys. Soc. Egypt, 1982, pp.47-53.
- [7] Njastad. O, On some cases of neary J. Math., 1965, pp.961-970.
- [8] Palaniappan. N., Fuzzy Topology Narosa Publication, 2002.
- [9] Pao Ming Pu, and Ying Ming Liu, Fuzzy Topology-I, Neighbourhood structure of fuzzy point and Mooresmith convergence, J. Math. Anal. Appl., 1980. pp. 571-599
- [10] Rekhasrivastava, S. N. L. and Fuzzy Hausdorff Topological Appl., 1981, pp.497-506.
 Arun. K. Srivastava, Spaces, Math. Anal.
- [11] Thakur. S. S, Surendra Singh, On fuzzy semi-preopen sets and fuzzy semi- Precontinuity, Fuzzy sets and systems, 1998, pp.383-391.
- [12] Thangaraj. G and Anjalmose.S., On Fuzzy Baire spaces, J. Fuzzy Math., 2013, pp.667-676.
- [13] Zadeh. L. A., Fuzzy Sets, Information and Control, 1965, pp.338-353.