Encapsulation of Propolis by Complex Coaservation Technique: Preparation and Characterizations

International Journal of Polymer and Textile Engineering
© 2018 by SSRG - IJPTE Journal
Volume 5 Issue 3
Year of Publication : 2018
Authors : Özge İnşaatçı, Necla Yaman Turan
: 10.14445/23942592/IJPTE-V5I3P103
pdf
Citation:
MLA Style:

Özge İnşaatçı, Necla Yaman Turan, " Encapsulation of Propolis by Complex Coaservation Technique: Preparation and Characterizations" SSRG International Journal of Polymer and Textile Engineering 5.3 (2018): 15-20.

APA Style:

Özge İnşaatçı, Necla Yaman Turan, (2018).  Encapsulation of Propolis by Complex Coaservation Technique: Preparation and Characterizations. SSRG International Journal of Polymer and Textile Engineering 5(3), 15-20.

Abstract:

 Propolis is a natural antibacterial agent. Encapsulation of propolis has not investigated since now because of its hydrophilic character. This study aims to improve propolis microencapsulation by complex coacervation using both gelatin and gum arabic as encapsulating agents to overcome this problem. To make the coacervation of a hydrophilic core material viable, a water-in-oil emulsion was first prepared using different oils. To determine effect of oil types and stirring velocity, microeccapsulation were fulfilled four oils (thyme, rice, garlic and olive) and three stirring velocity (500, 1000 and 1500 rpm). Twelve microcapsule formulations were prepared containing gelatin, gum arabic and propolis/oil emulsion. The morphology of microcapsules was analyzed by optical microscopy. The hygroscopicity, particle size, Fourier transform infrared spectroscopy and stability of the encapsulated material were also examined. All of the microcapsule formulations were spherical, multi nucleate and only slightly soluble and hygroscopic. It was possible to efficiently encapsulate propolis using the double emulsion method followed by complex coacervation. When olive oil was used, propolis was not encapsulated because of its viscosity and amount of saturated fatty acid. The effective encapsulation process for propolis was obtained with rice oil at 1500 rpm stirring velocity.

References:

[1] U. Kumova, A. Korkmaz, B.C. Avcı and G. Ceran, Önemli bir arı ürünü: Propolis, Uludağ Arıcılık Dergisi, vol. 2, pp. 10-23, 2002. 
[2] Z. Harish, A. Rubinstein, M. Golodner, M. Elmaliah and Y. Mizrachi, Suppression of hıv-1 replication by propolis and its immunoregulatory effect, Drugs Under Experimental and Clinical Research, vol. 23(2), pp. 89-96. 1997. 
[3] P. Pietta, C. Gardana and A.M. Pietta, “Analytical methods for quality control of propolis”, Fitoterapia, vol. 73, pp. 7-20, 2002. 
[4] Ş. Alay, Isıl enerji depolama özelliklikli mikrokapsüller içeren akıllı tekstil ürünlerinin geliştirilmesi”, Doktora Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta, 203p, 2010. 
[5] S. Demirbağ, Kompleks koaservasyon metodu ile isı depolama ve güç tutuşur özellikli mikrokapsül üretimi ve tekstil uygulamaları, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta, 123 p. 2014. 
[6] B. Özerdem, Ev tekstilinde kullanılacak materyallerde multifonksiyonel özellik sağlayacak mikrokapsül hazırlanması ve uygulanması, Tekstil Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, 2011. 
[7] G. Koç, Uv koruyucu ve bronzlaştırıcı etki eldesine yönelik mikrokapsül hazırlanması ve %100 pamuklu kumaşa aplikasyonu”, Yüksek Lisans Tezi, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Kahramanmaraş, 2015. 
[8] G. Erkan, Bazı antifungal ajanların mikrokapsülasyonu ve tekstil materyallerine aplikasyonu, Doktora Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Türkiye, 2008. 
[9] P. Monllor, M. A. Bonet, F. Cases, Characterization of thebehaviour of flavour microcapsules in cotton fabrics, European Polymer Journal, vol. 43(6), pp. 2481-2490, 2007. 
[10] M. L. Bruschi, M.L.C. Cardoso, M.B. Lucchesi and M.P.D. Gremiao, Gelatin microparticles containing propolis obtained by spray-drying technique: preparation and characterization, International Journal of Pharmaceutics, vol. 264(1-2), pp. 45-55, 2003. 
[11] N. Prichapan and U. Klınkesorn, Factor affecting the properties of water-in-oil-in-water emulsions for encapsulation of minerals and vitamins. Songklanakarin Journal Of Science&Technology, vol. 36(6), pp. 651-661, 2014. 
[12] A. Benichou, A. Aserin and N. Garti, Double emulsions stabilized by new molecular recognition hybrids of natural polymers, Polymers for Advanced Technologies, vol. 13(10‐12), pp. 1019-1031, 2002. 
[13] A. Benichou, A. Aserin and N. Garti, W/O/W double emulsions stabilized with wpı–polysaccharide complexes, Colloids and Surfaces A: Physicochemical And Engineering Aspects, vol. 294(1-3), pp. 20-32, 2007. 
[14] M. Bonnet, M. Cansell, A. Berkaoui, M.H. Ropers, M. Anton, and F. Leal-Calderon, Release rate profiles of magnesium from multiple W/O/W emulsions, Food Hydrocolloids, vol. 23(1), pp. 92-101, 2009. 
[15] R. Lutz, A. Aserin, L. Wicker and N. Garti, Release of electrolytes from w/o/w double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate, Colloids And Surfaces B: Biointerfaces, vol. 74.1, pp. 178-185, 2009. 
[16] M. Bonnet, M. Cansell, F. Placin, M. Anton and F. Leal-Caderon, Impact of sodium caseinate concentration and location on magnesium release from multiple w/o/w emulsions, Langmuir, vol. 26(12), pp. 9250-9260, 2010. 
[17] M. Bonnet, M. Cansell, F. Placin, E. David-Briand, M. Anton and F. Leal-Calderon, Influence of ionic complexation on release rate profiles from multiple water-in-oil-in-water (W/O/W) emulsions. Journal of Agricultural And Food Chemistry, vol. 58(13), pp. 7762-7769, 2010. 
[18] J. O’regan, D. M. Mulvihill, Sodium Caseinate–Maltodextrin Conjugate Stabilized Double Emulsions: Encapsulation and Stability, Food Research International, vol. 43(1), pp. 224-231, 2010. 
[19] B. Li, Y. Jiang, F. Liu, Z. Chai, Y. Li, Y. Li and X. Leng, Synergistic effects of whey protein–polysaccharide complexes on the controlled release of lipid‐soluble and water‐soluble vitamins in W1/O/W2 double emulsion systems. International Journal of FoodScience&Technology, vol. 47(2), pp. 248-254, 2012. 
[20] H. J. Giroux, S. Constantineau, P. Fustier, C. P. Champagne, D. St-Gelais, M. Lacroix and M. Britten, Chees eFortification Using Water-In-Oil-In-Water double emulsions as carrier for water soluble nutrients, International Dairy Journal, vol. 29(2), pp. 107-114, 2013. 
[21] A. Delphine, B. Stephanie, B. Guy, F. Puel, A. Rivoire and J.M. Galvan, Formation of microcapsules by complex coacervation, The Canadian Journal Of Chemical Engineering, vol. 93, pp. 183-191, 2015. 
[22] H. Aloys, S. A. Korma, T. M. Alice, N. Chantal, A. H. Ali, S. M. Abed, and H. Ildephonse, Microencapsulation by complex coacervation: Methods, techniques, benefits, and applications-A review. American Journal of Food Science and Nutrition Research, vol. 3(6), pp. 188-192, 2016. 
[23] K. Nakagawa, H. Nagao, Microencapsulation of oil droplets using freezing-induced gelatin–acacia complex coacervation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 411, pp. 129-139, 2012. 
[24] G.Q. Huang, J.X. Xiao, S.Q. Wang, H.W. Qiu, Rheological properties of O-carboxymethylchitosan – gum Arabic coacervates as a function of coacervation pH, Food Hydrocolloids, vol. 43, pp. 436-441, 2015. 
[25] I. Abdelmalek, A. Mesli, I. Svahn and G. Simonneaux, Cinnamaldehyde loaded-microparticles obtained by complex coacervation: Influence of the process parameters on the morphology and the release of the core material, Biointerface Research in Applied Chemistry, vol. 7(1), pp. 1939-1944, 2017. 
[26] C. Schmitt and S.I. Turgeon, Protein/polysaccharide complexes and coacervates in food systems, Advances in Colloid and Surface Science, vol. 167, pp. 73-70, 2011. 
[27] W. Bo, A. Benu, J.B. Colin, Optimisation of the microencapsulation of tuna oil in gelatin-sodium hexametaphosphate using complex coacervation, Food Chemistry, vol. 158, pp. 358-365, 2014. 
[28] C.Y.G. Lemetter, F.M. Meeuse, N.J. Zuidam, Control of the Morphology and the Size of Complex Coacervate Microcapsules During Scale-up, AIChE Journal, vol. 55 (6), pp. 1487-1496, 2009. 
[29] Y. P. Lemos, P. H. M. Marfil andV. R. Nicoletti, Particle size characteristics of buriti oil microcapsules produced by gelatin-sodium alginate complex coacervation: Effect of stirring speed, International Journal of Food Properties, vol. 20(25), pp.1438-1447, 2017. 
[30] S. Krishnan, R. Bhosale and R. Singhal, Microencapsulation of cardamom oleoresin: Evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials, Carbohydrate Polymers, vol. 61, pp. 95–102, 2005. 
[31] Y. Lv, X. Zhang, H. Zhang, S. Abbas and E. Karangwa, The study of pH-dependent complexation between gelatin and gum arabic by morphology evolution and conformational transition, Food Hydrocolloids, vol. 30, pp. 323-332, 2013. 
[32] https://en.wikipedia.org/wiki/Olive_oil 
[33] https://ecommons.cornell.edu/bitstream/handle/1813/56143/thyme-oil-MRP-NYSIPM.pdf?sequence=1 
[34] B. U. Bagudo and O. D. Acheme, Chemical analysis of locally cultivated garlic and it’s oil, Der Chemica Sinica, vol. 5(1), pp. 128-134, 2014. 
[35] https://en.wikipedia.org/wiki/Rice_bran_oil 
[36] B. C. Nie, J. C. Li and H. Q. Zhang, Interaction between reflected shock and bubble in near-wall underwater explosion, Procedia Engineering, vol. 126, pp. 725 – 729, 2015.

Key Words:

  Propolis, Oil, Antibacterial, Coacervation