Structural Configuration and Thermal Analyses of Composite Films of Poly (methyl methacrylate)/Lead Oxide Nanoparticles

International Journal of Applied Physics
© 2016 by SSRG - IJAP Journal
Volume 3 Issue 3
Year of Publication : 2016
Authors : Sarah A. Elawam, Hoda M. Abou-Shady, Wafaa M. Morsi, Osiris W. Guirguis

How to Cite?

Sarah A. Elawam, Hoda M. Abou-Shady, Wafaa M. Morsi, Osiris W. Guirguis, "Structural Configuration and Thermal Analyses of Composite Films of Poly (methyl methacrylate)/Lead Oxide Nanoparticles," SSRG International Journal of Applied Physics, vol. 3,  no. 3, pp. 6-14, 2016. Crossref,


In the present work, solution-cast method was used to prepare thin films of poly(methyl methacrylate)/lead oxide nanoparticles composites [PMMA/PbO(NPs)] due to their importance in different applications. X-ray diffraction analyses, scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and thermal properties were employed to characterize the structure properties of such composite. The XRD patterns suggested that the miscibility between the amorphous components of PMMA and PbO nanoparticles was possible. The SEM images show the distributions and dispersions of PbO nanoparticles on the surface of PMMA and the composite films. From the FTIR results, the performance properties of PMMA depend on the concentration of PbO nanoparticles. In addition, thermal results showed variations in the melting temperature (Tm), shape and area of thermal peaks which were attributed to the different degrees of crystallinity and the existence of interactions between PMMA and PbO nanoparticles molecules.


Biomaterials, poly(methyl methacrylate); lead oxide nanoparticles; polymer– nanoparticles composites; thermal analyses; structure configuration


[1] M. Salavati-Niasari, F. Mohandes, and F. Davar, “Preparation of PbO nanocrystals via decomposition of lead oxalate,” Polyhedron, vol. 28, pp. 2263–2267, 2009.
[2] E. E. Ferg, T. Phangalala, and T. Dyl, “A new look at determining acid absorption of lead oxide used in the manufacturing of Pb-acid batteries,” J. Appl. Electrochem., vol. 40, pp. 383-391, 2010.
[3] S. Liu, Z. - R. Tang, Y. Sun, J. C. Colmenares, and Y. - J. Xu, “One-dimension-based spatially ordered architectures for solar energy conversion,” Chem. Soc. Rev., vol. 44, pp. 5053-5075, 2015.
[4] P. Nandy, P. Bandyopadhyaya, A. Deya, R. Basu, and S. Das, “Synthesis and characterization of copper doped zinc oxide nanoparticles and its application in energy conversion,” Curr. Appl. Phys., vol. 14, pp. 1149-1155, 2014.
[5] E. Ozkaraoglu, I. Tunc, and S. Suzer, “Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation,” Polymer, vol. 50, pp. 462-466, 2009.
[6] B. Choudhary, S. Chawla, K. Jayanthi, K. N. Sood, and S. Singh, “The effect of Al and B on the luminescent property of porous silicon,” Curr. Appl. Phys., vol. 10, pp. 807-812, 2010.
[7] A. Singh, U. K. Kulkarni, and C. Khan-Malek, “Patterning of SiO2 nanoparticle-PMMA polymer composite microstructures based on soft lithographic techniques,” Microelectron. Eng., vol. 88, pp. 939-944, 2011.
[8] A. Silva, K. Dahmouche, and B. Soares, “The effect of addition of acrylic acid and thioglycolic acid on the nanostructure and thermal stability of PMMA montmorillonite nanocomposites,” Appl. Clay Sci., vol. 47, pp. 414-420, 2010.
[9] W. Ma, J. Zhang, X. Wang, and S. Wang, “Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions,” Appl. Surf. Sci., vol. 253, pp. 8377-8388, 2007.
[10] V. L. Schade, and T. S. Roukis, “The role of polymethyl methacrylate antibiotic-loaded cement in addition to debridement for the treatment of soft tissue and osseous infections of the foot and ankle,” J. Foot Ankle Surg., vol. 49, pp. 55-62, 2010.
[11] S. P. Mohanty, M. N. Kumar, and N. S. Murthy, “Use of antibiotic-loaded polymethyl methacrylate beads in the management of musculoskeletal sepsis - a retrospective study,” J. Orthop. Surg., vol. 11, pp. 73-79, 2003.
[12] N. L. Pleshko, A. L. Boskey, and R. Mendelsohn, “An infrared study of the interaction of polymethyl methacrylate with the protein and mineral components of bone,” J. Histochem. Cytochem., vol. 40, pp. 1413-1417, 1992.
[13] A. Stevens, and J. Germain, The Theory and Practice of Histological Techniques, 3rd Ed., Resin Embedding Media, J. D. Bancroft, and A. Stevens, Eds. New York, Churchill Livingstone, 1990.
[14] S. A. Elawam, W. M. Morsi, H. M. Abou-Shady, and W. G. Osiris, “Characterizations of beta-lead oxide “massicot” nano-particles,” Brit. J. Appl. Sci. Technol., vol. 17, pp. 1-10, 2016.
[15] S. Li, W. Yang, M. Chen, J. Gao, J. Kang, and Y. Qi, “Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate,” Mater. Chem. Phys., vol. 90, pp. 262-269, 2005.
[16] B. Jia, and L. Gao, “Synthesis and characterization of single crystalline PbO nanorods via a facile hydro-thermal method,” Mater. Chem. Phys., vol. 100, pp. 351-354, 2006.
[17] M. M. Kashani-Motlagh, and M. K. Mahmoudabad, “Synthesis and characterization of lead oxide nanopowders by sol-gel method,” J. Sol-Gel Sci. Techn., vol. 59, pp. 106-110, 2011.
[18] L. Li, X. Zhu, D. Yang, L. Gao, J. Liu, R. V. Kumar, and J. Yang, “Preparation and characterization of nanostructured lead oxide from spent lead acid battery paste,” J. Hazard. Mater., vol. 203, pp. 274-282, 2012.
[19] A. El-Sayed Abdo, M. A. M. Ali, and M. R. Ismail, “Natural fibre high-density polyethylene and lead oxide composites for radiation shielding,” Phys. Chem., vol. 66, pp. 185-195, 2003.
[20] W. H. Zhong, G. Sui, S. Jana, and J. Miller, “Cosmic radiation shielding tests for UHMWPE fiber/nano-epoxy composites,” Compos. Sci. Technol., vol. 69, pp. 2093- 2097, 2009.
[21] M. Erdem, O. Baykara, M. Dogru, and F. Kuluozturk, “A novel shielding material prepared from solid waste containing lead for gamma ray,” Radiat. Phys. Chem., vol. 79, pp. 917-922, 2010.
[22] V. Harish, N. Nagauah, T. N. Prabhu, and K. T. Varughese, “Thermo-mechanical analysis of lead monoxide filled unsaturated polyester based polymer composite radiation shields,” J. Appl. Polym. Sci., vol. 117, pp. 3623-3629, 2010.
[23] Y. R. Uhm, J. Kim, S. Lee, J. Jeon, and C. K. Rhee, “In situ fabrication of surface modified lead monoxide nanopowder and its HDPE nanocomposite,” Ind. Eng. Chem. Res., vol. 50, pp. 4478-4483, 2011.
[24] K. E. Geckeler, and H. Nishide, Advanced Nanomaterial, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011.
[25] A. Hassen, A. M. El Sayed, W. M. Morsi, and S. El- Sayed, “Influence of Cr2O3 nanoparticles on the physical properties of polyvinyl alcohol,” J. Appl. Phys., vol. 112, pp. 093525, 2012.
[26] A. M. El Sayed, and W. M. Morsi, “Dielectric relaxation and optical properties of polyvinyl chloride/lead monoxide nanocomposites,” Polym. Composite., vol. 34, pp. 2031-2039, 2013.
[27] A. M. El Sayed, and W. M. Morsi, “α-Fe2O3/(PVA + PEG) nanocomposite films; synthesis, optical, and dielectric characterizations,” J. Mater. Sci., vol. 49, pp. 5378-5387, 2014.
[28] A. M. El Sayed, S. El-Gamal, W. M. Morsi, and Gh. Mohammed, “Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films,” J. Mater. Sci., vol. 50, 4717-4728, 2015.
[29] P. D. Anderson, M. Prusty, B. J. Keestra, and J. G. P. Goossens, “Experimental and computational study on structure development of PMMA/SAN blends,” Chem. Eng. Sci., vol. 62, 1825-1837, 2007.
[30] Ismayil, V. Ravindrachary, R. F. Bhajantri, S. D. Praveena, Boja Poojary Dhanadeep Dutta, and P. K. Pujari, “Optical and microstructural studies on electron irradiated PMMA A positron annihilation study,” Polym. Degrad. Stabil., vol. 95, 1083-1091, 2010.
[31] M. S. Khan, R. A. Qazi, and M. S. Wahid, “Miscibility studies of PVC/PMMA and PS/PMMA blends by dilute solution viscometry and FTIR,” Afr. J. Pure Appl. Chem., vol. 2, pp. 41-45, 2008.
[32] L. Peng, Y. Luo, Y. Dan, L. Zhang, Q. Zhang, S. Xia, and X. Zhang, “The study of preparation and luminescence of poly(methyl methacrylate)/rare earth composite luminescent materials,” Colloid Polym. Sci., vol. 285, pp. 153-160, 2006.
[33] A. Sarı, C. Alkan, and A. Karaipekli, “Preparation, characterization and thermal properties of PMMA/nheptadecane microcapsules as novel solid–liquid micro PCM for thermal energy storage,” Appl. Energ., vol. 87, pp. 1529-1534, 2010.
[34] O. H. Kim, K. Lee, K. Kim, B. H. Lee, and S. Choe, “Effect of PVA in dispersion polymerization of MMA,” Polymer, vol. 47, pp. 1953-1959, 2006.
[35] N. A. El- Zaher, M. S. Melegy, and W. G. Osiris, “Thermal and structural analyses of PMMA/TiO2 nanoparticles composites,” Nat. Sci., vol. 6, pp. 859-870, 2014.
[36] E. M. Abdelrazek, I. S. Elashmawi, A. El-Khodary, and A. Yassin, “Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide,” Curr. Appl. Phys., vol. 10, pp. 607-613, 2010.
[37] K. Pielichowski, and J. Njuguna, Thermal Degradation of Polymeric Materials, Smithers Rapra Technlogy, 2005.
[38] M. C. Costache, M. J. Heidecker, E. Manias, and C. A. Wilkie, “The thermal degradation of PMMA nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes,” Polym. Advn. Technol., vol. 17, pp. 272-280, 2006.
[39] B. J. Holland, and J. N. Hay, “The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy,” Polymer, vol. 42, pp. 4825-4835, 2001.
[40] J. H. Kim, J. Y. Kim, Y. M. Lee, and K. Y. Kim, “Properties and swelling characteristics of crosslinked poly(vinyl alcohol)/chitosan blend membrane,” J. Appl. Polym. Sci., vol. 45, pp. 1711-1717, 1992.