SbO2 Nanoparticles: Structural, Morphological and Optical analysis for Photocatalytic applications

International Journal of Applied Physics
© 2019 by SSRG - IJAP Journal
Volume 6 Issue 2
Year of Publication : 2019
Authors : S.Ashmitha Sailish, M. Priya Dharshini, V.Shally , D.V.Ginitha, Sr.Gerardin Jayam
: 10.14445/23500301/IJAP-V6I2P105

pdf
Citation:
MLA Style:

S.Ashmitha Sailish, M. Priya Dharshini, V.Shally , D.V.Ginitha, Sr.Gerardin Jayam, "SbO2 Nanoparticles: Structural, Morphological and Optical analysis for Photocatalytic applications" SSRG International Journal of Applied Physics 6.2 (2019): 28-30.

APA Style:

S.Ashmitha Sailish, M. Priya Dharshini, V.Shally , D.V.Ginitha, Sr.Gerardin Jayam,(2019). SbO2 Nanoparticles: Structural, Morphological and Optical analysis for Photocatalytic applications. SSRG International Journal of Applied Physics 6(2), 28-30.

Abstract:

A simple co-precipitation method is employed to synthesize pure SbO2 nanoparticles in this present work. The synthesized nanoparticles are characterized using powder X-ray diffraction (PXRD), field effect scanning microscopy (FESEM), (Energy dispersive X-ray analysis (EDAX), Raman and photoluminescence spectroscopy (PL). PXRD studies revealed the formation of SbO2 in orthorhombic from JCPDS File No. 65-2446. The surface of FESEM images of antimony oxide nanoparticles showed both spherical and granular like structure. Energy dispersive X-ray of SbO2 displayed the presence antimony (Sb) and oxygen (O). Raman spectra also revealed the formation of pure SbO2 nanoparticles. PL emission spectrum of the synthesized sample indicated a blue shift and emission in the visible region. Thus the synthesized SbO2 nanoparticles can be finely tuned for photocatalytic applications.

References:

[1] Aslam Jamal, Mohammad Muzibur Rahman, Mohammed Faisal, Sher Bahadar Khan: (2011), Studies on photocatalytic Degradation of acridine orange and chloroform sensing using as grown antimony oxide microstructures, Material science and Application, 2: 676-683.
[2] Changhui Ye, Guangye Wang, Mingguang Kong, Lide Zhang: (2006), Controlled synthesis of antimony oxide nanoparticles, nanowires and nanoribbons,Journal of Nanomaterials article id 95670: 1-5.
[3] Bregoli L, Chiarini F, Gambarelli A, Sighinolfi G, Gatti AM, Santi P, Martelli AM, Cocco L: (2009), Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines, toxicology 262(2): 121-9 doi:10.1016/j.tox.2009.05.017.
[4] Claudia Ritter, Mehmet Z. Baykara, Bert Stegemann, Markus Heyde, Klaus Rademann, Jan Schroers, Udo D: (2013),Nonuniform friction-area dependency for antimony oxide surfaces sliding on graphite,Phys. Rev. B 88.
[5] Weil, Edward D; Levchik, Sergei V: (2009), Antimony trioxide and Related Compounds Flame retardants for
plastics and textiles: Practical applications.ISBN 978-3-446-41652-9.
[6] Grund, Sabina C.; Hanusch, Kunibert; Breunig, Hans J.; Wolf, Hans Uwe (2006) "Antimony and Antimony Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. doi:10.1002/14356007.a03_055.pub2
[7] TirthaSom, BasudebKarmakar; (2011), One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites, Journal of Alloys and Compounds, 509, 4999–5007.
[8] C. H. Xu S, Q. Shi , C Surya, C.H. Woo; (2007), Synthesis of antimony oxide nano-particles by vapor transport and condensation, J Mater Sci, 42, 9855 - 9858.
[9] Hui Shun Chin, Kuan Yew Cheong, Kharirunisak Abdul Razak; (2011), Controlled synthesis of Sb2O3 nanoparticles by chemical reducting method in ethylene glycol, J Nanopart Res, 13, 2807 – 2818.
[10] NicolaeTigau; (2006), Structural and Electrical Properties of Sb2O3 thin films,Journ. Phys, 53, 203 – 208.
[11] Wafaa K. Khalef; (2013), Synthesis of antimony oxide nanoparticles by plused laser ablation in wet media, Iraqi Journal of Applied Physics, 9, No - 3.
[12] Yuehua Hu, Huihui Zhang, Huaming Yang; (2007), Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitiation method, Journal of Alloys and Compounds, 428, 327- 331.
[13] AslamJamal, Mohammed M. Rahman, SherBahadarKhan, Mohd. Faisala, KalsoomAkhtar, Malik Abdul Rub, Abdullah M. Asirib, Abdulrahman O. Al-Youbib; (2012), Cobalt doped antimony oxide nano-particles based chemical sensor and photo-catalyst for environmental pollutants, Applied Surface Science, 261, 52 – 58.
[14] XianboLu, ZhenhaiWena, JinghongLia; (2006), Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors, biomaterial. DOI: 10.1016/j.biomaterials.2006.07.026.
[15] LiminSong, ShujuanZhang, QingwuWeia; (2011), Antimony trioxide microstructures: 3D grass-like architectures and optical properties DOI: 10.1016/j.cej.2011.10.092.
[16] Changhui Ye, Guangye Wang, Mingguang Kong, Lide Zhang: (2006), Controlled synthesis of antimony oxide nanoparticles, nanowires and nanoribbons,Journal of Nanomaterials article id 95670: 1-5.
[17] Teresa Cebriano, Bianchi Mendez, Javier Piqueras; (2012), Study of luminescence and optical resonances in Sb2O3 micro- and nanotriangles, J Nanopart Res 14:12-15.

Key Words:

Co-precipitation, SbO2 nanoparticles, PXRD, FESEM, EDAX, Raman, PL spectroscopy