Flocculated Universe is the Universe an Electromagnetic Entity?

International Journal of Geoinformatics and Geological Science
© 2018 by SSRG - IJGGS Journal
Volume 5 Issue 3
Year of Publication : 2018
Authors : Marek S. Żbik
pdf
How to Cite?

Marek S. Żbik, "Flocculated Universe is the Universe an Electromagnetic Entity?," SSRG International Journal of Geoinformatics and Geological Science, vol. 5,  no. 3, pp. 24-29, 2018. Crossref, https://doi.org/10.14445/23939206/IJGGS-V5I3P103

Abstract:

The recent map of the Universe shows a cellular void structure that indicates a structural change from a homogenous early universe to an inhomogeneous one today. Experiments with flocculated smectite clay solution show similar structure building phenomena. Similarities between the largest structure of the Universe and that formed and evolved within mutually flocculated clay dispersion suggests that our Universe may be a dynamic entity dominated, shaped and driven, not by dark forces, but by chance and competition between electromagnetic and gravitational forces.

Keywords:

 Flocculated Universe, electric Universe, large-scale structure of the Universe

References:

[1] V. de Lapparent, M.J. Geller and J.P. Huchra, A slice of the Universe. ApJ, 302, L1, 1986. 
[2] M. Colless, G. Dalton, S. Maddox, W. Sutherland, P. Norberg, S. Cole, J. Bland-Hawthorn, T. Bridges, R. Cannon, C. Colling, W. Couch, N. Cross, K. Deeley, R. De Proptis, S.P. Driver, G. Efstathiou, R.S. Ellis, C.S. Frenk, K. Glazebrook, C. Jackson, O. Lahav, L. Lewis, S. Lumsden, D. Madgwick, J.A. Peacock, B.A. Peterson, I. Price, M. Seaborne and K. Taylor, The 2dF Galaxy Redshift Survey: spectra and redshifts. Mon. Not. R. Astron. Soc. 328, 1039–1063, 2001. 
[3] D.G. York, J.E. Adelman, J.R. Anderson, S.F. Anderson, J. Annis, A. Neta, N.A. Bahcall, J.A. Bakken, R. Barkhouser, S. Bastian, E. Berman, W.N. Boroski, S. Bracker, Ch. Briegel, J.W. Briggs, J. Brinkmann, R. Brunner, S. Burles, L. Carey, M.A. Carr, F.J. Castander, B. Chen, P.L. Colestock, A.J. Connolly, J.H. Crocker, I.N. Csabai, P.C. Czarapata, J.E. Davis, M. Doi, T. Dombeck, I.D.Eisenstein, N. Ellman, B.R. Elms, M.L. Evans, X. Fan, G.R. Federwitz, L. Fiscelli, S. Friedman, J.A. Friedman, M. Fukugita, B. Gillespie, J.E. Gunn, V.K. Gurbani, E. De Haas, M. Haldeman, F.H. Harris, J. Hayes, T.M. Heckman, G.S. Hennessy, R.B. Hindsley, S. Holm, D.J. Holmgren, C-H. Huang, Ch. Hull, D. Husby, S-L. Ichikawa, T. Ichikawa, Z.E. Ivezic, S. Kent, R.S.J. Kim, E. Kinney, M. Klaene, A.N. Kleinman, S. Kleinman, G.R. Knapp, J. Korienek, R.G. Kron, P.Z. Kunszt, D.Q. Lamb, B. Lee, R.F. Leger, S. Limmongkol, C. Lindenmeyer, D.C. Long, C. Loomis, J. Loveday, R. Lucinio, R.H. Lupton, B. Mackinnon, E.J. Mannery, P.M. Mantsch, B. Margon, P. Mcgehee, T.A. Mckay, A. Meiksin, A. Merelli, D.G. Monet, J.A. Munn, V.K. Narayaman, T. Nash, E. Neilsen, R. Neswold, E.H.J. Newberg, R.C. Nichol, T. Nicinski, M. Nonino, N. Okada, S. Okamura, J.P. Ostriker, R. Owen, A.G. Pauls, J. Peoples, R.L. Peterson, D. Petravick, J.R. Pier, A. Pope, R. Pordes, A. Prosapio, R. Rechenmacher, T.R. Quinn, G.T. Richards, M.W. Richmond, C.H. Rivetta, C.M. Rockosi, K. Ruthmasdorfer, D. Sandford, D.J. Schlegel, D.P. Schneider, M. Sekiguchi, G. Sergey, K. Shimaszku, W.A. Siegmund, S. Smee, J.A. Smith, S. Snedden, R. Stone, Ch. Stoughton, M.A. Strauss, Ch. Stubbs, M. Subbarao, A.S. Szalay, I. Szapudi, G.P. Szokoly, A.R. Thakar, Ch. Tremonti, D.L. Tucker, A. Uomoto, D. Vandenberg, M.S. Vogeley, P. Waddell, S-I. Wang, M. Watanabe, D.H. Weinberg, B. Yanny and N. Yasuda, The Sloan Digital Sky Survey: Technical summary. Astron. J. 120, 1579–1587, 2000. 
[4] M. Geller, J. Huchra, Mapping the Universe. Science, 246, 897, 1989. 
[5] J.R. Gott III, M. Juric´, D. Schlegel, F. Hoyle, M. Vogeley, M.T. Tegmark, N Bahcall and J. Brinkmann, A map of Universe. The Astrophysical Journal, 624, 463–484, 2005. 
[6] D. Wiltshire, Timescape Cosmology: Modifying the Geometry of the Universe. Physical Review D 88, 083529, 2013. 
[7] V.C. Rubin, W.K.Jr. Ford and N. Thonnard, Extended rotation curves of high-luminosity spiral galaxies. IV - Systematic dynamical properties, SA through SC. Astrophys.J.Lett. 225, L107-L111, 1978. 
[8] P. Smart and N.K. Tovey, Electron Microscopy of Soils and Sediments: Techniques. Oxford: Clarendon Press, 1982. 
[9] D.C.G. Yin, M.T. Tang, Y-F. Song, F-R. Chen, K-S. Liang, F.W. Duewer, W. Yun, D.H. Ko, and H-P.D. Shieh, Energy-tuneable transmission X-ray microscope for differential contrast imaging with near 60 nm resolution tomography. Applied Physics Letters, 88, 241115- 1–241115-3, 2006. 
[10] J. Sokol, The Mystery of a Newly Discovered "Dark Galaxy" Quanta, Sept. 30, 2016. 
[11] M.B. McEwen, The Gelation of Montmorillonite. Amer. Min. 35, 166–172, 1950. 
[12] M.S. Żbik, R.St.C. Smart and G.E. Morris, G. E. Kaolinite flocculation structure. J. Colloid Interface Sci. 328, 73–80, 2008. 
[13] K. Terzaghi, Erdbaumechanik auf Bodenphysikalischer Grundlage. Leipzig: Franz Deuticke Press, 1925. 
[14] A.J. Casagrande, The structure of clay and its importance in foundation engineering. Boston Soc. Civil Eng. 19, 168–208, 1932. 
[15] V.M. Goldschmidt, Undersokelser over lersedimenter. Nord. Jordbrugsforsk. 4–7, 434–445, 1926. 
[16] R. Pusch, Clay Microstructure. National Swedish Building Research, Document D8, 1970. 
[17] N.R. O‟Brien, Fabric of kaolinite and illite floccules. Clays Clay Miner. 19, 353–359, 1971. 
[18] B. V. Derjaguin and L.D. Landau, Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Acta Physicochim. URSS, 14, 633-652, 1941. 
[19] E.J. Verwey and J.T. Overbeek, Theory of the stability of lyophobic colloids. Courier Corporation, 1948. 
[20] M.S. Żbik, W. Martens, R.L. Frost, Y-F. Song, Y-M. Chen and J.-H. Chen, Transmission X-ray Microscopy (TXM) reveals nano-structure of smectite gel. Langmuir 24, 8954–8958, 2008. 
[21] G.E. Morris and M.S. Żbik, Smectite suspension structural behaviour. Int. J. Miner. 93, 20-25, 2009. 
[22] M.S. Żbik, D.J. Williams, Y-F Song, Ch-Ch. Wang, The formation of a structural framework in gelled Wyoming bentonite: Direct observation in aqueous solutions. J. of Coll. and Int. Sci. 435, 119–127, 2014. 
[23] Bo. Jönsson, C. Labbes and B. Cabane, Interaction of Nanometric Clay Platelets. Langmuir 24, 20, 11406-11413, 2008. 
[24] A. Linde, A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters B. 108, 6, 389–393, 1982. 
[25] H.B.G. Casimir, On the attraction between two perfectly conducting plates. Koninklijke Niderlands Akademie van Westenchapp. Proc. Series B, Physical Science B51, 793-795, 1948. 
[26] C. Constable, , Earth‟s Electromagnetic Environment. Surv Geophys. DOI 10.1007/s10712-015-9351-1, 2015. 
[27] F. Fontani, B. Commerçon, A. Giannetti, M.T. Beltrán, A. Sánchez-Monge, L. Testi, J. Brand, P. Caselli, R. Cesaroni, R. Dodson, S. Longmore, M. Rioja, J.C. Tan and C.M. Walmsley, Magnetically regulated fragmentation of a massive, dense, and turbulent clump. Astronomy & Astrophysics 593, L14, 2016. DOI: 10.1051/0004-6361/201629442 
[28] R. Beck., Magnetic fields in the nearby spiral galaxy IC 342, Astronomy & Astrophysics, 578, A93, 2015. 
[29] R. Beck, Magnetic Fields in Spiral Galaxies, Astronomy and Astrophysics Review, Volume 24, id.4, 2016. 
[30] R. Beck and R. Wielebinski, Magnetic Fields in Galaxies, in: Planets, Stars and Stellar Systems Vol. 5, Springer, Dordrecht, 641-724, 2013. 
[31] T. Bührke, Forces that Rule in Galaxies, Max Planck Research 1, 34-41, 2015. 
[32] U. Klein and A. Fletcher, Galactic and Intergalactic Magnetic Fields, Springer, Heidelberg, 2015. 
[33] G. Rüdiger and R. Hollerbach, R. The Magnetic Universe, Wiley-VCH, Weinheim, 2004. 
[34] R. Beck, and P. Hoernes, Magnetic Spiral Arms in the Galaxy NGC 6946, Nature, 379, 47-49, 1996. 
[35] T. Davis, personal communication. 2018. 
[36] S. Hawking, A brief history of time. 1996.