Different Applications of Nanomaterials and Their Impact on the Environment

International Journal of Material Science and Engineering
© 2019 by SSRG - IJMSE Journal
Volume 5 Issue 1
Year of Publication : 2019
Authors : Amra Bratovcic
: 10.14445/23948884/IJMSE-V5I1P101
MLA Style:

Amra Bratovcic, "Different Applications of Nanomaterials and Their Impact on the Environment" SSRG International Journal of Material Science and Engineering 5.1 (2019): 1-7.

APA Style:

Amra Bratovcic, (2019) Different Applications of Nanomaterials and Their Impact on the Environment. SSRG International Journal of Material Science and Engineering 5(1), 1-7.


Today nanotechnology has become a top research field in the world. The present review covers classification and different applications of nanomaterials including catalysis, water treatment, sensors, energy storage and nanomedicine, as well as their positive and negative impacts on the environment. Increased attention needs to be directed towards the new nanomaterials because the development of knowledge of these nanoparticles is still in its infancy. Nanoparticles are ultra-small particles with exceptional properties, but some nanoparticles and nanomaterials also exhibit harmful properties. This is the reason why we must continue to study them and their potentially damaging effects.


[1] Martín-Gago, J.A., Casero, E., Briones, C., Serena, P.A., 2009. Nanociencia y Nanotecnología. Entre la ciencia ficción del presente y la tecnología del futuro. Fundación Española para la Ciencia y la Tecnología FECYT, Madrid.
[2] Serena, P., 2016. Guía específica de trabajo sobre ―nanotecnología para la revolución urbana: ciudades inteligentes‖.
[3] Haiyan Dong, YuGao, PatrickJ.Sinko, ZaishengWu, Jianguo Xu, Lee Jia, The nanotechnology race between China and the United States, Nano Today 11, (2016), 7—12.
[4] European Commission, 2016. Recommendation on the Definition of a Nanomaterial. http://data.europa.eu/eli/reco/2011/696/oj.
[5] Appenzeller T., The man who dared to think small, Science. 1991 Nov 29;254(5036):1300.
[6] Saleh, T.A., 2016. Nanomaterials for pharmaceuticals determination. Bioenergetics 5, 226. https://doi.org/10.4172/2167-7662.1000226.
[7] Elham Abbasi, Sedigheh Fekri Aval, Abolfazl Akbarzadeh, Morteza Milani, Hamid Tayefi, Nasrabadi, Sang Woo Joo, Younes Hanifehpour, Kazem Nejati-Koshki, and Roghiyeh Pashaei-Asl, Dendrimers: synthesis, applications, and properties, Nanoscale Res Lett. 2014, 9(1): 247.
[8] Classification of Nanomaterials, The Four Main Types of Intentionally Produced Nanomaterials, 2007, https://www.azonano.com/article.aspx?ArticleID=1872 on date 03.01.2019.
[9] Saleh NB, Aich N, Plazas-Tuttle J, Lead JR, Lowry GV. 2015. Research strategy to determine when novel nanohybrids pose unique environmental risks. Environ Sci Nano 2:11–18.
[10] Wu W, Jiang C, Roy VAL. 2015. Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7:38–58.
[11] Alshammari Fanar Hamad, Jong-Hun Han, Byung-Chun Kim, Irfan A. Rather, The intertwine of nanotechnology with the food industry, Saudi Journal of Biological Sciences 25 (2018) 27–30.
[12] A. Bratovčić, A. Odobašić, S. Ćatić, I. Šestan, Application of polymer nanocomposite materials in food packaging, Croat. J. Food Sci. Technol. (2015) 7 (2) 86-94.
[13] Rineesh NR, Neelakandan MS, Thomas S (2018) Applications of Silver Nanoparticles for Medicinal Purpose. JSM Nanotechnol Nanomed 6(1): 1063.
[14] Chen, M., Qin, X., Zeng, G., Biodegradation of carbon nanotubes, graphene and their derivatives, Trends Biotechnol. 35, (2017), 836-846.
[15] Gao Li, Rongchao Jin, Catalysis by gold nanoparticles: carbon-carbon coupling reactions, Nanotechnol Rev 2013; 2(5): 529–545.
[16] Santosh Bahadur Singh, Praveen Kumar Tandon, Catalysis: A Brief Review on Nano-Catalyst, Journal of Energy and Chemical Engineering, 2014, 2, 3, pg.106-115.
[17] W.-W. Tang, G.-M. Zeng, J.-L. Gong et al., ―Impact of humic/fulvic acid on the removal of heavy metals fromaqueous solutions using nanomaterials: a review,‖ Science of the Total Environment, vol. 468-469, pp. 1014–1027, 2014.
[18] Yan J., L. Han,W. Gao, S. Xue, andM.Chen, ―Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene,‖ Bioresource Technology, vol. 175, pp. 269–274, 2015.
[19] Liu F., Yang J. H., Zuo J. et al., ―Graphene-supported nanoscale zero-valent iron: removal of phosphorus from aqueous solution and mechanistic study,‖ Journal of Environmental Sciences, vol. 26, no. 8, pp. 1751–1762, 2014.
[20] Kalhapure R. S., Sonawane S. J., Sikwal D. R. et al., ―Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA, Colloids and Surfaces B: Biointerfaces, vol. 136, pp. 651–658, 2015.
[21] Haijiao Lu, Jingkang Wang, Marco Stoller, Ting Wang, Ying Bao, Hongxun Hao, An Overview of Nanomaterials for Water and Wastewater Treatment, Advances in Materials Science and Engineering, Volume 2016, Article ID 4964828, http://dx.doi.org/10.1155/2016/4964828
[22] Zhao, Z.M.; Sun, J.; Xing, S.M.; Liu, D.J.; Zhang, G.J.; Bai, L.J.; Jiang, B.L. Enhanced Raman scattering and photocatalytic activity of TiO2 films with embedded Ag nanoparticles deposited by magnetron sputtering. J. Alloys Compd. 2016, 679, 88–93.
[23] Guo, Q.; Zhou, C.Y.; Ma, Z.B.; Ren, Z.F.; Fan, H.J.; Yang, X.M. Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 2016, 45, 3701–3730.
[24] Zheng, L.X.; Han, S.C.; Liu, H.; Yu, P.P.; Fang, X.S. Hierarchical MoS2 nanosheet@TiO2 nanotube array composites with enhanced photocatalytic and photocurrent performances. Small 2016, 12, 1527–1536.
[25] A. Bratovcic, Photocatalytic degradation of organic compounds in wastewaters, Technologica acta, ISSN 1840-0426, accepted review paper, 2019.
[26] Venkatesh S. Manikandan, BalRam Adhikari, Aicheng Chen, Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages, Analyst, 19, 2018
[27] Longyi Chen, Eugene Hwang, Jin Zhang, Fluorescent Nanobiosensors for Sensing Glucose, Sensors 2018, 18(5), 1440; doi:10.3390/s18051440
[28] Brainina Kh., Stozhko N., Bukharinova M., Vikulova E., Nanomaterials: Electrochemical Properties and Application in Sensors, Physical Sciences Reviews, Vol. 3, 9, 2018, doi: https://doi.org/10.1515/psr-2018-8050
[29] Sibin Duan, Zhe Du, Hongsheng Fan, Rongming Wang, Nanostructure Optimization of Platinum-Based Nanomaterials for Catalytic Applications, nanomaterials, 2018, 8, 949; doi:10.3390/nano8110949
[30] Wolf, O.; Dasog, M.; Yang, Z.; Balberg, I.; Veinot, J.G.; Millo, O. Doping and quantum confinement effects in single Si nanocrystals observed by scanning tunneling spectroscopy. Nano Lett. 2013, 13, 2516–2521.
[31] Sichert, J.A.; Tong, Y.; Mutz, N.; Vollmer, M.; Fischer, S.; Milowska, K.Z.; Garcia Cortadella, R.; Nickel, B.; Cardenas-Daw, C.; Stolarczyk, J.K.; et al. Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett. 2015, 15, 6521–6527.
[32] Wu, J.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.
[33] Murali K, Neelakandan MS, Thomas S (2018) Biomedical Applications of Gold Nanoparticles. JSM Nanotechnol Nanomed 6(1): 1064.
[34] Qi L, Gao X. Emerging application of quantum dots for drug delivery and therapy. Expert Opin Drug Deliv. 2008; 5: 263-267.
[35] Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials. 2008; 29: 487-496.
[36] Chen FH, Gao Q, Ni JZ. The grafting and release behavior of doxorubicin from Fe3O4@ SiO2 core-shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnol. 2008; 19: 16.
[37] Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010; 7: 1063- 1077.
[38] Hutter E, Maysinger D. Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech. 2011; 74: 592-604.
[39] Ma X, Song L, Zhou N, Xia Y, Wang Z, A novel aptasensor for the colorimetric detection of S. Typhimurium based on gold nanoparticles, Int. J. Food Microbiol., 2017, doi: 10.1016/j.ijfoodmicro.2016.12.024
[40] Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012; 41: 2256- 2282.
[41] Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev. 2012; 112: 2739-2779.
[42] Bhumkar DR, Joshi HM, Sastry M, Pokharkar VB. Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm Res. 2007; 24: 1415-1426.
[43] Phillips RL, Miranda OR, You CC, Rotello VM, Bunz UH. Rapid and Efficient Identification of Bacteria Using Gold‐Nanoparticle–Poly (para‐phenyleneethynylene) Constructs. Angew Chem Int Ed Engl. 2008; 47: 2590-2594.
[44] Alvarez-Puebla RA, dos Santos DS Jr, Aroca RF. SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials. Analyst. 2007; 132: 1210-1214.
[45] Li F, Zhao Q, Wang C, Lu X, Li XF, Le XC. Detection of Escherichia coli O157: H7 using gold nanoparticle labeling and inductively coupled plasma mass spectrometry. Anal Chem. 2010; 82: 3399-3403.
[46] Laux, P., Riebeling, C., Booth, A.M., Brain, J.D., Brunner, J., Cerrilo, C., Creutzenberg, O., Estrela-Lopis, I., Gebel, T., Johanson, G., Jungnickel, H., Kock, H., Tentschert, J., Tlili, A., Schaffer, A., Sips, A., Yokel, R.A., and A. Luch. 2017. ―Biokinetics of nanomaterials: The role of biopersistence.‖ NanoImpact. Volume 6. Pg 69 – 80.
[47] Gmiza, K., Patricia Kouassi, A., Kaur Brar, S., Mercier, G., and J. Blais. 2015. Quantification and Analyses of Nanoparticles in Natural Environments with Different Approaches. Nanomaterials in the Environment. Pg 159 -177
[48] Batley, G.E., Kirby, J.K., McLaughlin, M.J., 2013. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc. Chem. Res. 46 (3), 854–862. https://doi.org/10.1021/ar2003368.
[49] Mitrano, D.M., Motellier, S., Clavaguera, S., Nowack, B., 2015. Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environ. Int. 77, 132–147.
[50] Kausar, A., Rafique, I., Muhammad, B., 2017. Aerospace application of polymer nanocomposite with carbon nanotube, graphite, graphene oxide, and nanoclay. Polym. Plast. Technol. Eng. 56 (13), 1–19.
[51] Patel, V., Mahajan, Y.R., 2017. Techno-commercial Opportunities of Nanotechnology in Wind Energy. Wiley VCH Verlag GmbH & Co. KGaAhttps://doi.org/10.1002/9783527696109.
[52] Etim, U., Peng, B., Yan, Z., 2018. Nanotechnology Applications in Petroleum Refining. pp. 37–65. https://doi.org/10.1007/978-3-319-60630-9_2.
[53] Durán N, Marcato PD, Alves OL, Souza GIH, De, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnology. 2005; 3: 8.
[54] Banerjee, T., Shelby, T., Santra, S., 2017. How can nanosensors detect bacterial contamination before it ever reaches the dinner table? Future Microbiol. (2), 12.
[55] Elena Villena de Francisco, Rosa M. García-Estepa, Nanotechnology in the agrofood industry, Journal of Food Engineering 238 (2018) 1–11.
[56] Patil, S.S., Kore, K.B., Kumar, P., 2009. Nanotechnology and its applications in veterinary and animal science. Vet. World 2 (12), 475–477.
[57] Chalco, W.R., 2011. Nanotecnología en la Industria Alimentaria (Tesis de Master). Universidad Politécnica de Madrid, Madrid.
[58] Manuja, A., Kumar, B., Singh, R.K., 2012. Nanotechnology developments: opportunities for animal health and production. Nanotechnol. Dev. 2 (1), 17–25.
[59] Plasencia, C., 2008. Avances de la Nanotecnología en el Sector Agroalimentario. II Jornada AIN. ―Aplicaciones Industriales de la Nanotecnología‖, Barcelona.
[60] Gogos, A., Knauer, K., Bucheli, T.D., 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60 (39), 9781–9792.
[61] Pradhan, N., Singh, S., Ojha, N., Shrivastava, A., Barla, A., Rai, V., Bose, S., 2015. Facets of nanotechnology as seen in food processing, packaging and preservation industry. BioMed Res. Int. 2015 365672.
[62] Milani, N., McLaughlin, M.J., Stacey, S.P., Kirby, J.K., Hettiarachchi, G.M., Beak, D.G., Coprnelis, G., 2012. Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J. Agric. Food Chem. 60 (16), 3991–3998.
[63] Milani, N., Hettiarachchi, G.M., Kirby, J.K., Beak, D.G., Stacey, S.P., McLaughlin, M.J., 2015. Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil. PLoS One 10 (5), e0126275.
[64] De la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J., 2013. Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl. Chem. 85 (12), 2161–2174.
[65] Claudia Francely Cumplido-Nájera, Susana González-Morales, Hortensia Ortega-Ortíz, Gregorio Cadenas-Pliego, Adalberto Benavides-Mendoza, Antonio Juárez-Maldonado, The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants, Scientia Horticulturae 245 (2019) 82–89.
[66] E.A.J. Bleeker, S. Evertz, R.E. Geertsma, W.J.G.M. Peijnenburg, J. Westra, S.W.P. Wijnhoven, Assessing health and environmental risks of nanoparticles current state of affairs in policy, science and areas of application, RIVM Report 2014-0157.
[67] Mike Pitkethly, Nanotechnology, regulation and the environment, materialstoday, 12, (2009), 1-2, pg 23.
[68] Duoxi Yao, Zheng Chen, Kui Zhao, Qing Yang, Wenying Zhang, Limitation and challenge faced to the researches on environmental risk of nanotechnology, Procedia Environmental Sciences 18, (2013), 149 – 156.
[69] Susan Dekkers, Agnes G. Oomen, Eric A.J. Bleeker, Rob J. Vandebriel, Christian Micheletti, Joan Cabellos, Gemma Janer, Natalia Fuentes, SocorroVázquez-Campos, Teresa Borges, Maria JoãoSilva, Adriele Prina-Mello, DaniaMovia, Fabrice Nesslany, Ana R.Ribeiro, Paulo Emílio Leite, Monique Groenewold, Flemming R. Cassee, Susan W.P. Wijnhoven, Towards a nanospecific approach for risk assessment, Regulatory Toxicology and Pharmacology, 80, 2016, 46-59.
[70] Ghosh, M., Bandyopadhyay, M., Mukherjee, A., 2010. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81, 1253–1262.
[71] Gao, M.L., Zhang, Z., Lv, M.T., Song, W.H., Lv, Y.H., 2018. Toxic effects of nanomaterial adsorbed cadmium on Daphnia magna. Ecotoxicol. Environ. Saf. 148, 261–268.
[72] Abou El-Nour KMM, Eftaiha A, Al-Warthan A, Ammar RAA. Synthesis and applications of silver nanoparticles. Arab J Chem. 2010; 3: 135- 140.
[73] Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: Advances and prospects. Colloids Surf B Biointerfaces. 2013; 105: 342-352.

Key Words:

nanoparticles, nanomaterials, environment, nanomedicine, catalysis.