Improvement and Evaluation of Culture Media to Detect Paenibacillus larvae, the Causative Agent of American Foulbrood (AFB)

International Journal of Agriculture & Environmental Science
© 2020 by SSRG - IJAES Journal
Volume 7 Issue 5
Year of Publication : 2020
Authors : Hannes Beims, Martina Janke, Werner von der Ohe
pdf
How to Cite?

Hannes Beims, Martina Janke, Werner von der Ohe, "Improvement and Evaluation of Culture Media to Detect Paenibacillus larvae, the Causative Agent of American Foulbrood (AFB)," SSRG International Journal of Agriculture & Environmental Science, vol. 7,  no. 5, pp. 130-134, 2020. Crossref, https://doi.org/10.14445/23942568/IJAES-V7I5P120

Abstract:

American Foulbrood (AFB) is a devastating bee disease, caused by the bacterium Paenibacillus larvae, and due for notification to responsible authorities. Brood of Apis mellifera gets infected after incorporation of low amounts of P. larvae spores and die after infection. Veterinarians and beekeepers can identify typical symptoms of diseased colonies. Still, from infection of a colony until the outbreak of AFB several years can remain, which in the bacterium can spread into other colonies. Microbiological methods allow detecting infections before outbreaks and to safe these colonies by beekeeping procedures. However, samples of food or honey are needed as a source to detect the spores of the causative agent. These matrices are native samples, that harbour a lot of ubiquitous contaminants, which may lead to un-analyzable samples. We present an easy microbiological method, using a different commercially available formulation of Columbia sheep blood agar, to decrease the number of un-analyzable samples.

Keywords:

Paenibacillus larvae, American Foulbrood, Microbiology, Cultivation, Germination, Contamination.

References:

[1] C. J. Ritten, D. Peck, M. Ehmke, M. A. Buddhika-Patalee, “Firm Efficiency and Returns-to-Scale in the Honey Bee Pollination Service Industry”, J Econ Entomol., vol. 28, pp. 1014-1022, 2018.
[2] E. Genersch, “American Foulbrood in honeybees and its causative agent, Paenibacillus larvae”, J Invertebr Pathol., vol. 103, pp. 10-19, 2010.
[3] E. Genersch, C. Otten, “The use of repetitive element PCR fingerprinting (rep-PCR) for genetic subtyping of German field isolates of Paenibacillus larvae subsp. larvae”, Apidologie, vol. 34, pp. 195-206, 2003.
[4] E. Genersch, E. Forsgren, J. Pentikäinen, A. Ashiralieva, S. Rauch, J. Kilwinski, I. Fries, “Reclassification of Paenibacillus larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens as Paenibacillus larvae without subspecies differentiation”, Int J Syst Evol Microbiol., vol. 56, pp. 501-511, 2006.
[5] H. Beims, B. Bunk, S. Erler, K. I. Mohr, C. Spröer, S. Pradella, G. Günther, M. Rohde, W. von der Ohe, M. Steinert, “Discovery of Paenibacillus larvae ERIC V: Phenotypic and genomic comparison to genotypes ERIC I-IV reveal different inventories of virulence factors which correlate with epidemiological prevalences of American Foulbrood“, Int J Med Microbiol., vol. 310, 151394, 2020.
[6] M. Djukic, E. Brzuszkiewicz, A. Fünfhaus, J. Voss, K. Gollnow, L. Poppinga, H. Liesegang, E. Garcia-Gonzalez, E. Genersch, R. Daniel, “How to kill the honey bee larva: Genomic potential and virulence mechanisms of Paenibacillus larvae”, PLos One, vol. 9, e90914, 2014.
[7] J. Ebeling, H. Knispel, G. Hertlein, A. Fünfhaus, E. Genersch, “Biology of Paenibacillus larvae, a deadly pathogen of honey bee larvae“, Appl Microbiol Biotechnol., vol. 100, pp. 7387-7398, 2016.
[8] L. Poppinga, E. Genersch, “Molecular pathogenesis of American Foulbrood: how Paenibacillus larvae kill honey bee larvae”, Curr Opin Insec. Sci., vol. 10, pp. 29-36, 2015.
[9] L. Popping, B. Janesch, A. Fünfhaus, G. Sekot, E. Garcia-Gonzalez, G. Hertlein, K. Hedtke, C. Schäffer, E. Genersch, “Identification and functional analysis of the S-layer protein SpIA of Paenibacillus larvae, the causative agent of American Foulbrood of honey bees”, PLoS Pathog., vol. 8, e1002716, 2012.
[10] O. Boecking, “Krankheitsbild bei ERIC I und bei ERIC II”, LAVES – Inst. f. Bienenkunde Celle, Germany, Das Bieneninstitut Celle informiert, 69, 2017.
[11] Friedrich-Loeffler-Institut, “Amerikanische Faulbrut”, Greifswald – Insel Riems, Germany: Amtliche Methodensammlung: Anzeigepflichtige Tierseuchen, 2018.
[12] W. von der Ohe, K. Schütze, F. W. Lienau, “Möglichkeiten der Vorbeugung der Amerikanischen Faulbrut mit Hilfe der Untersuchung von Futterkranzproben”, Die Biene, vol. 133, pp. 8-10, 1997.
[13] W. von der Ohe, K. Schütze, F. W. Lienau, “Prophylaxe der Amerikanischen Faulbrut mit Hilfe der Untersuchung von Futterkranzproben auf Paenibacillus-larvae-larvae-Sporen”, Deutsches Bienenjournal, vol. 5, pp. 138-141, 1997.
[14] M. O. Schäfer, W. von der Ohe, H. Beims, S. Fischer, “Laborvergleichsuntersuchung zum Nachweis von Paenibacillus larvae, dem Erreger der Amerikanischen Faulbrut”, Berl Münch Tierärztl Wochenschr, accepted, 2020.
[15] H. Beims, M. Janke, W. von der Ohe, M. Steinert, “Rapid identification and genotyping of the honeybee pathogen Paenibacillus larvae by combining culturing and quantitative multiplex PCR”, Open Vet J., vol. 10, pp. 53-58, 2020.
[16] W. von der Ohe, “Amerikanische Faulbrut – Bekämpfungsstrategie in Niedersachsen”, LAVES – Inst. f. Bienenkunde Celle, Germany, Das Bieneninstitut Celle informiert, 63, 2016.
[17] V. A. Govan, M. H. Allsopp, S. Davidson, “A PCR detection method for rapid identification of Paenibacillus larvae”, Appl Environ Microbiol., vol. 65, pp. 2243-2245, 1999.
[18] E. A. Shank, R. Kolter, “Extracellular signalling and multicellularity in Bacillus subtilis”, Curr Opin Microbiol., vol. 14, pp. 741-747, 2011.
[19] T. Descamps, L. DeSmet, P. STragier, P. DeVos, D. C. DeGraaf, “Multiple locus variable number of tandem repeat analysis: a molecular genotyping tool for Paenibacillus larvae”, Microb Biotechnol., vol. 9, pp. 772-781, 2016.
[20] B. J. Morrissey, T. Helgason, L. Poppinga, A. Fünfhaus, E. Genersch, G. E. Budge, “Biogeography of Paenibacillus larvae, the causative agent of American Foulbrood, using a new multilocus sequence typing scheme”, Environ Microbiol., vol. 17, pp. 1414-1424, 2015.
[21] E. B. Nyarko, C. W. Donnelly, “Listeria monocytogenes: strain heterogeneity, methods and challenges of subtyping”, J Food Sci., vol. 80, pp. 2868-2878, 2015.
[22] S. Krongdang, J. D. Evans, J. S: Pettis, P. Chantawannakul, “Multilocus sequence typing, biochemical and antibiotic resistance characterizations reveal the diversity of North American strains of the honey bee pathogen Paenibacillus larvae” PLoS One, vol. 12, e0176831, 2017.
[23] LAVES – Institut für Bienenkunde Celle, “Jahresbericht 2019”, Celle, Germany, 2020.