Visual Evolutions during Quantum Dots

International Journal of Applied Physics
© 2015 by SSRG - IJAP Journal
Volume 2 Issue 2
Year of Publication : 2015
Authors : S.Jeeva, Dr.R.Prabhakaran

pdf
How to Cite?

S.Jeeva, Dr.R.Prabhakaran, "Visual Evolutions during Quantum Dots," SSRG International Journal of Applied Physics, vol. 2,  no. 2, pp. 9-12, 2015. Crossref, https://doi.org/10.14445/23500301/IJAP-V2I2P103

Abstract:

The power levels can then be modeled by means of the element in a box model in which the force of dissimilar states is reliant on the extent of the box. Quantum dots are supposed to be in the 'weak imprisonment regime' if their radii are on the arrange of the exciton Bohr radius; the investigation of the electronic states of a quantum dot of InAs developed on a GaAs substrate has been deliberate for unusual geometries. We did the computation with each type of geometry we based on the Schrödinger equation for inactive element and we used "Comsol" for calculations. We considered energy values as a purpose of each of the parameters: duration, width and thickness of the wetting layer where supplementary parameters are held invariable. Wherever the quantum internment affects are entirely dominant and the energy levels opening up to the degree that the energy spectrum is approximately permanent, thus emitting white light.

Keywords:

hétérostructures, InAs / GaAs, the Schrödinger equation, simulation, COMSOL.

References:

1. Benahmed, A. Aissat, M. A. Benammar, Optical Transitions in Quantum Dots, International Journal of Physics, 2014, Vol. 2, No. 4, 109-111, 2014.
2. C. Charles: «Propriétés électroniques, optiques et dynamiques de boites quantiques auto-organisées et couplées sur substrat InP », thèse doctorat, Institut National des Sciences Appliquées de Rennes, 27 juin 2006.
3. P. M. Petroff, K. H. Schmidt, G. Medeiros-Ribeiro, A et J. Kotthaus, Size quantization and zero dimensional e in self assembled semiconductor quantum dots, Jpn. Jl. Appl Phys. 36, Part 1, 4068 (1997).
4. U. Banin, Y. Cao, D. Katz et O. Millo, Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots, Nature 400, 542 (1999).
5. A. Abdelali: «Rôle du rayonnement dans l’élaboration et l’étude nanoagrégats semi-conducteur de ZnS », mémoire de magister, université de Mentouri Constantine.
6. R. Chau, B. Doyle, S. Datta, J. Kavalieros and K. Zhang, Integrated nano electronics for the future, Nature Materials 6 (2007) 810.
7. RF Module User’s Guide. 1998-2012 COMSOL-Protected by U.S. Patents 7, 519, 518; 7, 596, 474; and 7, 623, 991. Patents pending.