Development of Sodium Ion Conducting Polymer Electrolyte for Solid State Battery Application

International Journal of Applied Physics
© 2018 by SSRG - IJAP Journal
Volume 5 Issue 2
Year of Publication : 2018
Authors : P. A. Fartode, S. S. Yawale and S. P. Yawale

pdf
How to Cite?

P. A. Fartode, S. S. Yawale and S. P. Yawale, "Development of Sodium Ion Conducting Polymer Electrolyte for Solid State Battery Application," SSRG International Journal of Applied Physics, vol. 5,  no. 2, pp. 1-5, 2018. Crossref, https://doi.org/10.14445/23500301/IJAP-V5I2P101

Abstract:

A new sodium ion conducting polymer electrolyte based on polyethylene oxide (PEO) with polyvinyl pyrrolidone (PVP) systems were prepared by solution cast technique. Experimental measurements such as electrical conductivity in the temperature range 313 to 375K and transport number were used to characterize these electrolytes. The electrolyte which contains 9 wt % of NaClO2 has the highest conductivity about 2.09 x 10-8 S/cm. The ionic transference number (tion) for the PEO-PVP polymer electrolyte synthesized with different concentration of NaClO2 was determined by Wagner’s dc polarization technique. The transference number for the polymer electrolytes prepared with 5, 6, 7, 8 and 9 wt % of NaClO2 were 0.940, 0.990, 0.824, 0.987 and 0.961 respectively. The conductivity Vs temperature plot shows the linear variation. The highest conductivity was found to be at 9 wt % of NaClO2 electrolyte.

Keywords:

Polymer electrolyte, Solid state battery, characteristics

References:

[1] M. B. Armand, Materials Science, 16(1986) 245.
[2] J. R. MacCallum, C. A. Vincent (Eds.), in: Polymer electrolytes Reviews, Elsevier, London, (1987).
[3] M. A. Rather and D. F. Shriver, Chem. Rev. 88(1988) 109.
[4] C. A. Vincent. Prog. Solid State Chem. 17 (1987) 145.
[5] M. B. Armand, Polymer electrolyte reviews (eds.), J. R. MacCallum and C. A. Vincent, London; Elsevier, 1987.
[6] J. Shiva Kumar, A. R. Subrahmanyam, M. Jaipal Reddy and U. V. Subba Rao, J. Ionics, 60 (2006) 3346-3349.
[7] R. Chandrasekaran and S. Selladurai, Solid State Ionics, 50 (2001) 89-94.
[8] R. Chandrasekaran, I. Ruth Mangani; R. Vasanthi and S. Selladurai, J. Solid State Ionics, 1 (2000) 88-93.
[9] R. Chandrasekaran and S. Selladurai, J. Solid State Electrochemistry, 5 (2000) 355-361.
[10] S. S. Rao, K. V. Satyanarayana Rao, Md. Shareefuddin, U. V. Subba Rao and S. Chandra, Solid State Ionics, 67 (1994) 331-334.
[11] S. S. Rao, M. Jaipal Reddy, K. N. Reddy and U. V. Subba Rao, Solid State Ionics, 74 (1994) 225-228.
[12] K. N. Kumar, T. Sreekanth, M. Jaipal Reddy and U. V. Subba Rao, J. Power Sources, 101 (2001) 130-133.
[13] R. Sathiyamoorthi, R. Chandrasekaran; S. Selladurai and T. Vasudevan, J. Ionics, (2003) 404-410.
[14] E. Laxmi Narsaiah, M. Jaipal Reddy and U. V. Subba Rao, J. Power Sources, 55 (1995) 255-257.
[15] S. Selladurai, R. Chandrasekaran, I. Ruth Mangani and R. Vasanthi, Ion conducting materials: Theory and Applications, (2001) 213-219.
[16] J. B. Wagner Jr. and C. J. Wagner, J. Chem. Phys. 26 (1957) 1597.