Production Of Carbon Nanotubes Using Chemical Vapour Decomposistion Process

International Journal of Chemical Engineering Research
© 2014 by SSRG - IJCER Journal
Volume 1 Issue 1
Year of Publication : 2014
Authors : Dr.M.Arivalagan, R.Sriram
pdf
How to Cite?

Dr.M.Arivalagan, R.Sriram, "Production Of Carbon Nanotubes Using Chemical Vapour Decomposistion Process," SSRG International Journal of Chemical Engineering Research, vol. 1,  no. 1, pp. 1-6, 2014. Crossref, https://doi.org/10.14445/23945370/IJCER-V1I1P102

Abstract:

This paper discuss about the production of nano tube using the chemical vapour decomposition method.  In this process the nano tubes will be a horizontal tube flow reactor and it will use the feed stream of acytlene and hydrogen. It will also discuss about the gas phase velocity and the temperature and the concentration of the chemical components. And it will provide the remarkable chemical, electrical, mechanical and thermal properties of the carbon nano tube in which the finished product will be fill for the each and every fields. It will be proposed as the potential methods for the carbon nano tubes which provide the simplicity in the structure and will create more compatability in the finished product.

Keywords:

Nano tubes, chemical vapour decomposistion, yeild.

References:

[1]    H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley,Chem. Phys. Lett.260, 471(1996).39.
[2]    H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta,A. Marucci, G. Dresselhaus, and M. S. Dresselhaus,Chem. Phys.Lett.289, 602(1998)
[3]    D. Yuan, L. Ding, H. Chu, Y. Feng, T. P. McNicholas, and J. Liu,Nano Lett.8, 2576(2008).79.
[4]    D. Takagi, Y. Homma, H. Hibino, S. Suzuki, and Y. Kobayashi, Nano Lett.6, 2642(2006).
[5]    A. Gruneis, M. H. Rummeli, C. Kramberger, A. Barreiro, T. Pichler,
[6]    R. Pfeiffer, H. Kuzmany, T. Gemming, and B. Buchner,Carbon44, 3177(2006).48.
[7]    A. G. Nasibulin, A. Moisala, H. Jiang, and E. I. Kauppinen, J. Nanopart. Res.8, 465(2006).49.
[8]    Y. Murakami, Y. Miyauchi, S. Chiashi, and S. Maruyama, Chem.Phys. Lett.377, 49(2003).50.
[9]    Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo,and S. Maruyama,Chem. Phys. Lett.385, 298(2004).51.
[10]    S. Maruyama, E. Einarsson, Y. Murakami, and T. Edamura, Chem.Phys. Lett.403, 320(2005).52.
[11]    R. Xiang, E. Einarsson, J. Okawa, Y. Miyauchi, and S. Maruyama,J. Phys. Chem. C113, 7511(2009).53.
[12]    K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima,Science306, 1362(2004).54.
[13]    G. Zhong, S. Hofmann, F. Yan, H. Telg, J. H. Warner, D. Eder,C. Thomsen, W. I. Milne, and J. Robertson,J. Phys. Chem. C113, 17321(2009).
[14]    D. Ding, J. Wang, Z. Cao, and J. Dai, Carbon41, 579(2003).62.
[15]    T. Murakami, T. Sako, H. Harima, K. Kisoda, K. Mitikami, and T. Isshiki,Thin Solid Films464, 319(2004).63.
[16]    B. Kitiyanan, W. E. Alvarez, J. H. Harwell, and D. E. Resasco,Chem. Phys. Lett.317, 497(2000).64.
[17]    C. Mattevi, C. T. Wirth, S. Hofmann, R Blume, M. Cantoro,C. Ducati, C. Cepek, A. Knop-Gericke, S. Milne, C. Castellarin-Cudia, S. Dolafi, A. Goldoni, R. Schloegl, and J. Robertson,J. Phys. Chem. C112, 12207(2008).65.
[18]    C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber,J. Phys.Chem. B106, 2429(2002).66.