Comparative Study on the Properties of Natural Rubber Composites Containing Kaolin and Calcined Kaolin and on the Possibilities to Apply Thereof as Antenna Substrates

International Journal of Material Science and Engineering
© 2018 by SSRG - IJMSE Journal
Volume 4 Issue 3
Year of Publication : 2018
Authors : Abdullah G. Al-Sehemi, Ahmed A. Al-Ghamdi, Nikolay T. Dishovsky, P. Malinova, Nikolay T. Atanasov and Gabriela L. Atanasova
pdf
How to Cite?

Abdullah G. Al-Sehemi, Ahmed A. Al-Ghamdi, Nikolay T. Dishovsky, P. Malinova, Nikolay T. Atanasov and Gabriela L. Atanasova, "Comparative Study on the Properties of Natural Rubber Composites Containing Kaolin and Calcined Kaolin and on the Possibilities to Apply Thereof as Antenna Substrates," SSRG International Journal of Material Science and Engineering, vol. 4,  no. 3, pp. 8-22, 2018. Crossref, https://doi.org/10.14445/23948884/IJMSE-V4I3P102

Abstract:

 The idea of combining the advantages of ceramic and polymer materials is not new. But it has become more and more important in recent years because of the improvement of various electronic devices that, in addition to improved parameters, have good mechanical resistance and flexibility. The aim of our study is to obtain composites based on natural rubber(NR) and fillers - standard and three types of calcined kaolin with different particle sizes and in-depth study of their vulcanization characteristics, physico-mechanical, electrical and dielectric properties. A promising application of the developed composites is in the field of wireless communications. For this purpose, a flexible multilayer antenna was prepared in which the composite NR-CK1.3, exhibiting the best dielectric properties, was used as the substrate and insulating layers. The antenna shows much better matching in the frequency ranges of 2.4-2.7 GHz and 5.1-5.4 GHz, compared to cases where thesubstrates are based on unfilled nitrile butadiene rubber.

Keywords:

Kaolin and Calcined Kaolin, Natural Rubber Composites, Physico-mechanical properties, Electrical and dielectric properties

References:

[1] C.D. Dimitrakopolous, C.D. and P.R.L. Malenfant, ―Organic Thin Film Transistors for Large Area Electronics‖, Adv. Mater., vol. 14, pp.99-117, 2002. 
[2] R. Morent, N. De Geyter, F. Axisa, N. De Smet, L. Gengembre, E. De Leersnyder, et al. ―Adhesion enhancement by a dielectric barrier discharge of PDMS used for flexible and stretchable electronics‖, J. Phys. D: Appl. Phys., vol. 40,pp.7392 -7401, 2007. 
[3] J.D. Bolt, D.P. Button, and B.A. Yost, ―Ceramic-fiber—Polymer composites for electronic substrates‖, Mater. Sci. Eng: A, vol. 109, pp. 207-211, 1989. 
[4] I.J. Youngs, G.C. Stevens, and A.S. Vaughan, ―Trends in dielectrics research: an international review from 1980 to 2004‖, J. Phys. D: Appl. Phys., vol. 39, pp.1267-1276, 2006. 
[5] M.T. Sebastian, and H. Jantunen, ―Polymer–Ceramic Composites of 0–3 Connectivity for Circuits in Electronics: A Review‖, Int. J. Appl. Ceram.Technol.,vol. 7, pp. 415-434, 2010. 
[6] H. Ohsato, T. Tsunooka, T. Sugiyama, K. Kakimoto, and H. Ogawa, ―Forsterite ceramics for millimeterwave dielectrics‖, J. Electroceram.,vol. 17, pp. 445-450, 2006. 
[7] M.T. Sebastian, (2008). Dielectric materials for wireless communication, Oxford, UK: Elsevier Publishers, 2008. 
[8] K.P. Surendran, N. Santha, P. Mohanan, P. and M.T. Sebastian, ―Temperature stable low loss ceramic dielectrics in (1-x)ZnAl2O4-xTiO2 system for microwave substrate applications‖, Eur. Phys. J. B,vol. 41, pp. 301-306, 2004. 
[9] S. Rimdusit, and H. Ishida, ―Development of New Class of Electronic Packaging Materials Based on Ternary Systems of Benzoxazine, Epoxy, and Phenolic Resins‖, Polymer, vol. 41, pp.7941-7949, 2000. 
[10] D.P. Button, B.A. Yost, R.H. French, W.Y. Hsu, J.D. Belt, M.A. Subrahmanian, et al. ‖Ceramic substrates and packages for electronic applications‖, Advances Ceramic, American Ceramic Society, Westerville OH, vol. 26,pp. 353-373, 1989. 
[11] E.M. Dannenberg (1982). ―Filler Choices in the Rubber Industry‖, Rubber Chem. Technol., vol. 55, pp. 860-880, 1982. 
[12] T.D. Kelly, and G.R. Matos, (2005) ―Historical Statistics for Mineral and Material Commodities in the United States‖, US Geological Survey, Data Series 140 
[13] W. Waddell, and L. Evans, ―Use of Nonblack Fillers in Tire Compounds‖, Rubber Chem. Technol., vol. 69, pp. 377-423, 1996. 
[14] E. Gerasimov, Ceramic Technology, Sofia, Bulgaria: Saraswati, 2003. 
[15] Huber Engineered Materials, Ingredients for Rubber Reinforcement, [Online] Available: www.hubermaterials.com/215htm 
[16] M. Hancock, ―Mineral additives for thermal barrier plastics film‖, Plasticulture, vol.79, pp. 4-14, 1988. 
[17] A.A. Al-Ghamdi, O.A. Al-Hartomy, F.R. Al-Solamy, N.T. Dishovsky, P. Malinova,N.T. Atanasov, and G.L. Atanasova, ―Conductive Carbon Black/Magnetite, Hybrid Fillers in Microwave Absorbing Composites Based on Natural Rubber‖, Compos. Part B-Eng., vol. 96, pp.231-241, 2016. 
[18] S. Brunauer, P.H. Emmett, and E. Teller, ―Adsorption of Gases in Multimolecular Layers‖, J. Am. Chem. Soc., vol. 60, pp. 309-319, 1938. 
[19] I. Ismail, ―Cross-sectional areas of adsorbed nitrogen, argon, krypton, and oxygen on carbons and fumed silicas at liquid nitrogen temperature‖, Langmuir, vol. 8, pp. 360–365, 1992. 
[20] S. Lowell, J. Shields, M.A. Thomas, and M. Thommes, Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Netherlands: Springer, 2004. 
[21] J.H. de Boer, B.G. Linsen, T.H. van der Plas, and G.J. Zondervan, ―Studies on pore systems in catalysts: VII. Description of the pore dimensions of carbon blacks by the t method‖, J. Catal., vol. 4, pp. 649-653, 1965. 
[22] E.P. Barrett, L.G. Joyner, and P.P. Halenda, K.S.W. ―The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms‖, J. Am. Chem. Soc., vol. 73, pp. 373–380, 1951. 
[23] K.S.W. Sing, D.H. Everett, R.H.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, and T. Siemieniewska, ―Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity‖, Pure Appl. Chem., vol. 57, pp. 603-619, 1985. 
[24] M. Mirsha, A.P. Singh, P. Sambyal, S. Teotia, and S.K. Dhawan, ―Facilesynthesis of Phenolic Resin Sheet Consisting Expanded Graphite/-Fe2O3/SiO2Composite and Its Enhanced Electromagnetic Interference Shielding Properties‖, IndianJ. Pure Ap. Phy., vol. 52, pp. 478-485, 2014. 
[25] S. Thomas, C.H. Chan, L.A. Pothen, J. Joy, and H.J. Maria, Natural RubberMaterials: Volume 2: Composites and Nanocomposites, Cambridge, UK: Royal Society of Chemistry, 2013. 
[26] K. Oohira, ―Development of an Antenna Materials Based on Rubber that has Flexibility and High Impact Resistance‖, NTN Technical Review, vol. 76, pp. 58-63, 2008. 
[27] M. Raees, S.H. Dar, and J. Ahmed, ―Characterization of Flexible Wearable Antenna based on Rubber Substrate‖, Int. J. Adv.d Comp. Sci. Appl., vol. 7, pp. 190-195, 2016. 
[28] C.A. Blannis, Antenna Theory: Analysis and Design, 3d ed., Willey, p.770, 2005. 
[29] J. Baker-Jarvis, M.D. Janezic, and D.C. De Groot (2010) ―High Frequency Dielectric Measurements‖, IEEE Instru. Meas. Mag., vol. 13, pp. 24-31, 2010. 
[30] Gupta, S. Sankaralingam, and S. Dhar, (2010) Development of wearable and implantable antennas in the last decade: A review, In: Proc. of Mediterranean Microwave Symposium, Turkey,2010, pp.251-267. 
[31] A. Al-Sehemi, A. Al-Ghamdi, N. Dishovsky, N. Atanasov, and G. Atanasova, ―Design and performance analysis of dual-band wearable compact low-profile antenna for body-centric wireless communications‖.Int. J. Microw. Wirel. T., vol.10, pp. 1175-1185, 2018.