Physico-Chemical And Thermal Characterisation of Canarium Schweinfurthii Engl (Cs) Shells

International Journal of Material Science and Engineering
© 2021 by SSRG - IJMSE Journal
Volume 7 Issue 3
Year of Publication : 2021
Authors : Biloa Otiti Sandrine Olive, betene Ebanda Fabien, Mewoli Armel Edwige, Noah Pierre Marcel Anicet, Atangana Ateba
How to Cite?

Biloa Otiti Sandrine Olive, betene Ebanda Fabien, Mewoli Armel Edwige, Noah Pierre Marcel Anicet, Atangana Ateba, "Physico-Chemical And Thermal Characterisation of Canarium Schweinfurthii Engl (Cs) Shells," SSRG International Journal of Material Science and Engineering, vol. 7,  no. 3, pp. 9-15, 2021. Crossref,


The present work focuses on studying the Physico-chemical and thermal properties of CanariumSchweinfurthiiEngl (CS) core shells. These shells, abandoned after consumption, pose an environmental problem, and their hardness inspires the study of their properties. This study aims to improve the state of knowledge to use them for the reinforcement of composites. Their density and moisture content are investigated. Their molecular structure is studied by ATR-FTIR spectroscopy. Quantitative analysis of the biochemical composition was carried out using the TAPPI method and TGA/DSC analysis. The results revealed that the CS shells had a water content of 6.26%, a holocellulose content of 53.07%, and lignin content of 35.79%. The crystallinity index of the CS shells is 82%. The chemical composition of the studied shells is as follows: an extractives content of 6.887%; a water content of 17.669%; a lignin content of 36.96%, a holocellulose content of 54.48%, a cellulose content of 37.31%, and a hemicellulose content of 19.14%. The thermal transitions observed in the thermograms correlate with the chemical composition of the TAPPI.


ATR-FTIR, Canarium Schweinfurthii Engl, crystallinity index, density, TAPPI method.


[1] J. M. BERTHELOT, Matériaux composites : comportement mécanique et analyse des structures., Ed. MASSON, (1996)
[2] Hamid, Essabir. Bio-composites à base de coque de noix d’arganier : Mise en oeuvre, caractérisation et modélisation du comportement mécanique. Diss. Université IBN ZOHR, (2015).
[3] Vivien, Jacques, Jean-Jacques Faure, and Jean-Jacques Faure. Fruitiers sauvages d'Afrique:(espèces du Cameroun). Ministère de la coopération : Centre technique de coopération agricole et rurale, (1996).
[4] Matig, O. Eyog, et al. Les fruitiers forestiers comestibles du Cameroun. Bioversity International, (2006).
[5] Nkouam, Gilles Bernard. Conservation des fruits du karité (VitellariaparadoxaGaertn.) et de l'aiélé (CanariumschweinfurthiiEngl.): isothermes de sorption d'eau et extraction des matières grasses des fruits stockés. Diss. Institut National Polytechnique de Lorraine, (2007)
[6] Yilleng, M. T., et al. Adsorption of hexavalent chromium from aqueous solution by granulated activated carbon from Canariumschweinfurthii seed shell. Advances in Applied Science Research 4.3 (2013) 89-94.
[7] Bassey, U. et al. "Adsorption isotherm, kinetics, and thermodynamics study of cr (vi) ions onto modified activated carbon from endocarp of Canariumschweinfurthii." International Research Journal of Pure and Applied Chemistry vol 6(1) (2015): 46-55.
[8] Maguie, KammegneAdelaide, et al. Adsorption Study of the Removal of Copper (II) Ions Using Activated Carbon-Based Canariumschweinfurthii Shells Impregnated with ZnCl2. IRA International Journal of Applied Science 8 (2017) 18.
[9] Olawale, A. S., and O. A. Ajayi. Thermal activation of Canarium Schweinfhurthi nutshell. Australian Journal of Basic and Applied Sciences 3.4 (2009) 3801-3807.
[10] Ehiem, James Chinaka, et al. The moisture-dependent flow characteristics of canariumschweinfurthiiengler nuts. Research in Agricultural Engineering 65(2) (2019) 40-47.
[11] ChinakaEhiem, J., IfeanyichukwuObioraNdirika, V., Nelson Onwuka, U., Gariepy, Y., & Raghavan, V. Water absorption characteristics of CanariumSchweinfurthii fruits. Information Processing in Agriculture 6(3) (2018) 386-395.
[12] Obi, Okey Francis, Chimuanya Emeka Ijere, and Michael Emeka Okechukwu. Determination of physical and aerodynamic characteristics of African olive (CanariumSchweinfurthii) nut. Agricultural Engineering International: CIGR Journal 20(3) (2018) 172-179.
[13] Koungang, B., Ndapeu, D., Tchemou, G. ,Mejouyo, P. , Ntcheping, B. , Foba,J. , ,Courard, L. and Njeugna, E. Physical, Water Diffusion and Micro-Structural Analysis of CanariumSchweinfurthiiEngl Materials Sciences and Applications 11(9) (2020) 626-643.
[14] Ndapeu, D., Tamwo, F., NganouKoungang, M.B., Tchuen, G., SikameTagne, N.R., Bistac, S. and Njeugna, E. Elaboration and characterization of a composite material based on canariumschweinfurthiiengl cores with a polyester matrix. Materials Sciences and Applications 11(03) (2020) 204.
[15] Nono, Y. Jiokap, and C. Kapseu. Problématiques du traitement et de la distribution des fruits de l'Aiélé (CanariumschweinfurthiiEngl.) au Cameroun. RivistaItalianadelleSostanze Grasse 76(1) (1999) 21-26.
[16] Youmssi, DVC, Bampel, YDM, Njankouo, JM, Saha, J.-B. et Ndikontar. Chemical composition of some plantation wood species (Eucalyptus saligna, Cupressus lusitanica, and Eucalyptus paniculata) and assessment of compatibility with plaster. Journal of the Indian Academy of Wood Science 14(2) (2017) 146-153.
[17] Sango, T., CheumaniYona, A. M., Duchatel, L., Marin, A., KorNdikontar, M., Joly, N., & Lefebvre, J.-M. Stepwise multiscale deconstruction of banana pseudo–stem (Musa acuminata ) biomass and morpho–mechanical characterization of extracted long fibers for sustainable applications. Industrial Crops and Products, 122 (2018): 657–668. doi:10.1016/j.indcrop.2018.06.05
[18] Betene, A. D. O., Betene, F. E., Martoïa, F., Dumont, P. J., Atangana, A., & Noah, P. M. A Physico-Chemical and Thermal Characterization of Some Lignocellulosic Fibres: Ananascomosus (AC), Neuropeltisacuminatas (NA) and Rhecktophyllumcamerunense (RC). Journal of Minerals and Materials Characterization and Engineering 8(4) (2020) 205-222.
[19] Okoroigwe, Edmund C., Christopher M. Saffron, and Pascal D. Kamdem. Characterization of palm kernel shell for materials reinforcement and water treatment. Journal of Chemical Engineering and Materials Science 5(1) (2014) 1-6.
[20] Bhushan, B. Agricultural residues and their utilization in some South and South East Asia countries. FAO, Rome (Italy). United Nations Environment Programme, Nairobi (Kenya). FAO/UNEP Seminar on Residue Utilization-Management of Agricultural and Agro-Industrial Wastes. Rome (Italy). 2(1977) 255-314.
[21] Ayrilmis, Nadir, AlperenKaymakci, and Ferhat Ozdemir. Physical, mechanical, and thermal properties of polypropylene composites filled with walnut shell flour. Journal of Industrial and Engineering Chemistry 19(3) (2013) 908-914.
[22] Okutucu, C., Duman, G., Ucar, S., Yasa, I., &Yanik, J. "Production of fungicidal oil and activated carbon from pistachio shell." Journal of analytical and applied pyrolysis 91.1 (2011): 140-146.
[23] Bitra, V.S.P, Banu, S., Ramakrishna, P., Narender, G., Womac, R. Moisture dependent thermal properties of peanut pods, kernels, and shells. Biosystems engineering 106(4) (2010) 503-512.
[24] Ntenga, R., Mfoumou, E., Béakou, A., Tango, M., Kamga, J., & Ahmed, A. Insight on the Ultrastructure, Physicochemical, Thermal Characteristics and Applications of Palm Kernel Shells. Materials Sciences and Applications 9(10) (2018) 790.
[25] Mewoli, A.E., Segoria, C., BeteneEbanda, F., Ateba, A., Noah, P.M.A., Ndiwe, B. and Njom, A.E. Physical-Chemical and Mechanical Characterization of the Bast Fibers of Triumfetta cordifolia A. Rich. from the Equatorial Region of Cameroon. Journal of Minerals and Materials Characterization and Engineering 8(04) (2020) 163.
[26] Nadlene, R., Sapuan, SM, Jawaid, M., Ishak, MR et Yusriah, L. Material characterization of roselle fiber (Hibiscus sabdariffa L.) as potential reinforcement material for polymer composites. Fibres& Textiles in Eastern EuropeNr 6(114) (2015) 23-30.
[27] Legrand, NBR, Lucien, M., Pierre, O., Fabien, BE, Marcel,NP et Jean, AA. Physico-Chemical and Thermal Characterization of a Lignocellulosic Fiber, Extracted from the Bast of Cola lepidota Stem. Journal of Minerals and Materials Characterization and Engineering 8(5) (2020) 377-392.
[28] Tiryaki, B., Yagmur, E., Banford, A., &Aktas, Z. Comparison of activated carbon produced from natural biomass and equivalent chemical compositions. Journal of analytical and applied pyrolysis 105 (2014) 276-283.
[29] Gharbi, Asma, Ramzi Bel Hassen, and Sami Boufi. Composite materials from unsaturated polyester resin and olive nuts residue: The effect of silane treatment. Industrial Crops and Products 62 (2014) 491-498.
[30] White, John E., W. James Catallo, and Benjamin L. Legendre. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. Journal of analytical and applied pyrolysis 91(1) (2011) 1-33.
[31] Demiral, ─░lknur, and ┼×erifeÇemrek Kul. Pyrolysis of apricot kernel shell in a fixed-bed reactor: Characterization of bio-oil and char. Journal of Analytical and Applied Pyrolysis 107 (2014) 17-24
[32] CagdasOkutucu, GozdeDuman, SuatUcar, Ihsan Yasac, JaleYanik. Journal of analytical and Applied Pyrolysis 91 (2011) 140–14
[33] Okutucu, C., Duman, G., Ucar, S., Yasa, I., &Yanik, J. Production of fungicidal oil and activated carbon from pistachio shell. Journal of analytical and applied pyrolysis 91(1) (2011) 140-146.
[34] Herrera, R., Erdocia, X., Llano-Ponte, R., &Labidi, J. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties. Journal of analytical and Applied Pyrolysis 107 (2014) 256-266.
[35] Célino, A., Gonçalves, O., Jacquemin, F., &Fréour, S. Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydrate polymers 101 (2014): 163-170.
[36] Moonart, Ukkadate, and Songkot Utara. Effect of surface treatments and filler loading on the properties of hemp fiber/natural rubber composites. Cellulose 26(12) (2019) 7271-7295.
[37] Júnior, Heitor Luiz Ornaghi, Ademir José Zattera, and Sandro Campos Amico. Thermal behavior and the compensation effect of vegetal fibers. Cellulose 21(1) (2014) 189-201.
[38] Milani, M. D. Y., Samarawickrama, D. S., Dharmasiri, G. P. C. A., &Kottegoda, I. R. M. Study the Structure, Morphology, and Thermal Behavior of Banana Fiber and Its Charcoal Derivative from Selected Banana Varieties. Journal of Natural Fibers, 13(3) (2016) 332–342.
[39] Tanobe, V. O. A., Sydenstricker, T. H. D., Munaro, M., & Amico, S. C. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polymer Testing, 24(4) (2005). 474–482.
[40] Amra Bracotovcic. Different Applications of Nanomaterials and their Impact on the Environment. SSRG international of Material Science and Engineering (IJMSE)- 5 (2019) 1-7.
[41] Gagan Bansal, Anup Kunar, V. K. Singh. Thermo-Mechanical Characterization of residue powder extracted from Rohu Fish Scale in Composite Material Development. SSRG international of Material Science and Engineering ( SSRG-IJMSE)- 5(2) (2019) 1-6.
[42] Amrinder Singh P., Sehijpal Singh, Vikas Dhawam and Jaiinderpreet Singh. Development of Natural Fiber Reinforced Fully Biodegradable Composite Rod. IJMSE 8(1) (2017) 53-59.