A New Morphometric-SIG approach to Detect Quaternary Deformation Using Abnormal Drainage Indicators

International Journal of Nursing and Health Science
© 2019 by SSRG - IJNHS Journal
Volume 5 Issue 3
Year of Publication : 2019
Authors : Noamen Rebai, Ali Chaieb
pdf
How to Cite?

Noamen Rebai, Ali Chaieb, "A New Morphometric-SIG approach to Detect Quaternary Deformation Using Abnormal Drainage Indicators," SSRG International Journal of Nursing and Health Science, vol. 5,  no. 3, pp. 24-29, 2019. Crossref, https://doi.org/10.14445/24547484/IJNHS-V5I3P105

Abstract:

The integration of structural, seismologic, morphologic, and drainage anomaly data represents a new methodological approach that can be helpful to detect and predict neotectonic deformation in Quaternary deposits where accidents are not well exposed and are usually sought by thick recent sediments.
In this paper, we have implemented this integrative methodology in order to put in evidence the active tectonics in the region of Kasserine. In fact, we have used a morphometric methodological approach by the semi-automatic determination of drainage anomaly. Data processing and improvement is determined by the Geographic
Information System (GIS). Mapping results of drainage anomaly are validated by field observations at three quite different sites located near a recent seismic earthquake (dated back to 2010 with a Magnitude of 3.4). Results of observations clearly prove the existence of N110 structural direction that corresponds to an alignment of drainage anomalies and pinpoint the existence of another alignment of seismic focal corresponding to that recent earthquake. These results also emphasize the presence of an active accident in the quaternary deposits in the trough of Kasserine.

Keywords:

Abnormal drainage, GIS, Kasserine, Morphometry, Tectonic accident, Quaternary.

References:

[1] Gvin, V.Y., et Filosovov, V.P., Using one-order valley length maps to predict structures in the northern part of the Volga-Urals petroliferous province. Acad. Sc. USSA Earth Science section, Washington, 160 (1965) 16-18.
[2] Griboulard, R., Analyse morphostructurale de la Méseta côtière semptentrionale et du proche plateau continental (Maroc). Bulletin Institut Géologique Bassin Aquitaine, 33 (1983) 25-37.
[3] Collina-Girard, J., et Giboulard, R., La structuration profonde du plateau de Valensol (Alpes de Haute Provence). Apport des analyses des réseaux d’entailles et des surfaces topographiques.Géologie Méditerranéenne, 2 (1990) 153-171.
[4] Ganas , A ., Pavlides, S., et Karastathis, V., DEM-based morphometry of range-front escarpments in Attica, Central Greece, and its relation to fault slip rates. Geomorphology, 65 (2005) 301-319.
[5] Che X., Extraction et reconstruction du réseau hydrographique à partir du modèle numérique de terrain”, thèse de doctorat en Informatique. Faculté des sciences de Luminy, (2005)129.
[6] Grohmann, C.H., Riccomini, CI, et Alves, F.M., SRTM-based morphotectonic analysis of the Poços de Caldas Alkaline Massif, southeastern Brazil. Computers & Geosciences, 33 (2007) 10-19.
[7] Dehbozorgi, M., M. Pourkermani, M. Arian, A. A. Matkan, H. Motamedi, and A. Hosseiniasl., Quantitative analysis of relative tectonic activity in the Sarvestan area, central Zagros, Iran. Journal of Geomorphology 121(3–4) (2010) 329–341. doi:10.1016/j.geomorph.2010.05.002.
[8] Moges, G. and V. Bhole., Morphometric characteristics and the relation of stream orders to hydraulic parameters of river goro: An ephemeral river in Dire-dawa, Ethiopia. Universal Journal of Geoscience 1 (2015) 13–27. doi:10.13189/ujg.2015.030102.
[9] Prizomwala, S.P., Das, A., Chauhan, G., Solanki, T., Basavaiah, N., Bhatt, N., Thakkar, M.G. & Rastogi, B.K. LatenPleistocene–Holocene uplift driven terrace formation and climate tectonic interplay from a seismically active intraplate setting: An example from Kachchh, Western India. – Journal of Asian Earth Sciences, (2016) http://dx.doi.org/10.1016/j. jseaes.2016.04.013.
[10] INM, (2011) ; Catalogue des séismes 2011. Institue Nationale de Météorologie
[11] Horton, R.E., Erosional development of streams and their drainagebasins: hydrological approach to quantitative morphology. Geological Society of America Bulletin, 56, (1945) 275-370.
[12] Hurtrez, J.E., et Lucazeau, F., Lithological control on relief hypsometry in the Hérault drainage basin (France). Earth and Planetary Sciences, 328 (1999) 687-694.
[13] Zhang, W., Y. S. Hayakawa, and T. Oguchi., DEM and GIS based morphometric and topographic-profile analyses of Danxia landforms. Geomorphometry, (2011) 121–124.
[14] Mahmood, S.A. and Gloaguen, R., Appraisal of Active Tectonics in Hindu Kush: Insights from DEM Derived Geomorphic Indices and Drainage Analysis, Geoscience Frintiers Journal , 3 (2012) 407-428.
[15] Bagha, N., Arian, M., Ghorashi, M., Pourkermani, M., El Hamdouni, R., & Solgi, A., Evaluation of relative tectonic activity in the Tehran basin, central Alborz, northern Iran. Geomorphology, 213 (2014) 66-87.
[16] Das, A., Chauhan, G., Prizomwala, S.P. & Thakkar, M.G. Tectonic variability along the South Katrol Hill Fault, Kachchh, Western India: Insights from geomorphic indices. – Zeitschrift für Geomorphologie, N.F. 60 (2016) 209– 218. doi: 10.1127/zfg/2016/0201.
[17] Richardson, J.C., Hodgson, D.M., Wilson, A., Carrivick, J.L. & Lang, A, Testing the applicability of morphometric characterisation in discordant catchments to ancient landscapes: A case study from southern Africa. – Geomorphology, 261 (2016 162–176.
[18] Tíme, A.K., Sümeghy, B. & Sipos, G., Late Quaternary paleodrainage reconstruction of the Maros River alluvial fan. – Geomorphology , 204 (2014) 49–60.
[19] Ferry M., Meghraoui M., Abou Karaki N., Al-Taj M., Amoush H., Al-Dhaisat S., BarjousM., A 48-kyr-long slip rate history for the Jordan Valley segment of the Dead Sea Fault. Earth and Planetary Science Letters, 260(3-4) (2007) 394-406.
[20] Deffontaines B., Chotin P., Ait Brahim L. & Rozanov M., Investigation of active faults in Morocco using morphometric methods and drainage pattern analysis, Geologische Rundschau, 81(11) (1992) 199-210.
[21] Awasthi, K.D., Sitaula, B.K., Singh, B.R.,et Bajacharaya, R.M., Land-use change in two Nepalese watersheds: GIS and geomorphometric analysis. Land degradation and development, 13 (2002) 495-5 13.
[22] Baroni,C.,Noti,V.,Ciccacci,S.,Righini,G., et Salvator,M.C., Fluvial origin of the valley system in Northern Victoria Land (Antartica) from quantative geographic analysis.GSA Bulletin, 117 (2005) 212-228.
[23] Rebai,N ., Hammadi Achour ., Rochdi Chaabouni ., Rania Bou Kheir ., Samir Bouaziz., DEM and GIS analysis of sub-watersheds to evaluate relative tectonic activity. A case study of the North–south axis (Central Tunisia). Earth Science Informatics,6 (2013) 187–198.
[24] Resmi. M.R., H. Achyuthan, and Manoj Kumar Jaiswal Holocene tectonic uplift using geomorphometric parameters, GIS and OSL dating: Palar River basin, southern peninsular India. Zeitschrift für Geomorphologie, 61/3 (2017) 243–265.
[25] Boumaggard, E.H., Griboulard, R., Jourani, E., Hamoumi, N., et Bodier, C., Anomalies du réseau du thalweg et localisation des morphostructures : le cas du bassin d’Essaouira (Maroc). African Geosience Review, 3 (2000) 315-325.
[26] Burbank, D.W., and Anderson, R.S., Tectonic Geomorphology. Blackwell Science, Oxford, (2001) 247.
[27] Chen, Y. C., Sung, Q, et Cheng, K.Y., Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56 (2003) 109-137.
[28] Ambili. V., A.C. Narayana., -Tectonic effects on the longitudinal profiles of the Chaliyar River and its tributaries, southwest India .Geomorphology, 217 (2014) 37-47.
[29] Ben Ayed. N et Zargouni, F., Carte séismotectonique de la Tunisie, (1990).
[30] Roumiguieres, A., et Uguet,D., Notice explicative de la carte géologique de la Tunisie Echelle 1 :50 000 feille n°84 Kasserine, (1946).
[31] Chihi. L., Etude tectonique et microtectonique du graben de Kasserine (Tunisie centrale) et des structures voisines J. Selloum et J. Maagarba. Thèse Doct. 3ème cycle,Université Paris Sud, Centre Orsey, (1984) 116.
[32] Chihi L., Les fossés néogènes à quaternaire de la Tunisie et de la mer Pélagienne ; leur étude structurale et leur signification dans le cadre géodynamique de la Méditerranée centrale. Thèse d’État, université Paris XI-Orsay, (1995) 568
[33] ONM, Carte géologique de Kasserine feuille n°84, (1948). Office National des Mines-Tunisie.
[34] Burollet, P.F., Importance des facteurs salifères dans la tectonique tunisienne. Livre Jubilaire M.Solignac.Annales des Mines et de la Géologie, Tunis, 26 (1973)111-120.
[35] Chihi L., Ben Ayed N., Le rôle de la fracturation précoce sur la distribution des structures récentes le long du décrochement de Kasserine.Ann. Tectonicae,1 (1991) 64-73.
[36] Castany G., Etude géologique de l'Atlas Tunisien oriental, Ann. Mines et Géol., Tunis, n°:8, (Thèse Doctorat. ès Sc., Paris), (1951).
[37] Amor Bkhairi et Mohamed Raouf Karray., Les terrasses historiques du bassin de Kasserine (Tunisie centrale). Géomorphologie, 3 (2008) 201-2013.
[38] Rebai, N., Slama, T., et Turki, M.M., Evaluation de différentes méthodes d’interpolation spatiale pour la production d’un MNT à partir des données topographiques dans un SIG.Revue XYZ, 110 (2007) 23-32.
[39] Chaieb, A., Rebai, N. & Bouaziz, S., Vertical Accuracy Assessment of SRTM Ver 4.1 and ASTER GDEM Ver 2 Using GPS Measurements in Central West of Tunisia. Journal of Geographic Information System, 8 (2016) 57-64.
[40] Maune, D.F., Digital Elevation Model Technologies and Applications, the DEM users Manuals Bethesda, MD. American Society of Photogrammetry and Remote Sensing, (2001) 540.
[41] Howard, A.D., Drainage analysis in geology interpretation: a summation. Bulletin American Association of Petroleum Geologists, Tulsa, 51 (1967) 2246-2259.
[42] Deffontaine, B., Développement d’une méthodologie morpho-néotectonique morpho-structurale ; Analyse des surfaces enveloppes, du réseau hydrographique et des modèles numériques de terrain ; Application au Nord-Est de la France. Thèse de Géologie Structurale et de Télédétection, UPVI, (1990) 230
[43] Deffontaines, B., et Chorowicz, J., Principles of drainage basin analysis from multi-source data: application to the structural analysis of the Zaire Basin. Tectonophysics, 194 (1991) 237-263.
[44] Angelier J., Chen R.-F., Soulèvement et plissement tectoniques révélés par analyse mathématique empirique de profils longitudinaux de rivières : un cas à Taiwan. C. R. Géosciences, 334 (2002) 1103-1111.
[45] Ben Hassen M., Analyse de la déformation récente dans l'atlas méridional de la Tunisie par géomorphométrie et interférométrie
radar (Dinsar). Thèse de Doctorat en cotutelle. Univ. de Paris-Est Marne-la-Vallée et Univ. Tunis El Manar, (2012) 344.
[46] Chaieb.A, Rebai N, Ghanmi M.A, Moussi A, Bouaziz S., Spatial analysis of river longitudinal profiles to cartography tectonic activity in kasserine plain Tunisia. Geographia Technica, 12(2) (2017) 30-40.
[47] Regard, V. R. Lagnous, N. Espurt, J. Darrozes, P. Baby, M. Roddaz, Y. Calderon, W. Hermo., Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): A response to the Nazca Ridge subduction. Geomorphology, 107 (2009) 107–117.
[48] Ribolini. A, Spagnolo. M., Drainage network geometry versus tectonics in the Argentera Massif (French-Italian Alps). Geomorphology, 93 (2007) 53–266.
[49] Miliaresis, G.C., Geomorphometric mapping of Asia Minor from globe digital elevation model. Geografiska Annaler, 88 A (2006) 209-22.
[50] Lin, Z, et Oguchi,T., DEM analysis on longitudinal and transverse profiles of steep mountainous watersheds. Geomorphology, 78 (2006)77-89.
[51] Jordan, G., Meijninger, B.M.L., van Hinsbergen, D.J.J., Meulenkamp, J.E., et van Dijk, P.M., Extraction of morphotectonic features from DEMs: Development and applications for study areas in Hungary and NW Greece. International Journal of Applied Earth Observation and Geoinformation, 7 (2005) 163-182.
[52] Kelin X., Whipple, Gregory E., Tucker, Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of geophysical research, 104(B8) (2019) 17,661-17,674.