Single CDBA Realization of Inverse Filters

International Journal of Electronics and Communication Engineering
© 2021 by SSRG - IJECE Journal
Volume 8 Issue 8
Year of Publication : 2021
Authors : T. S. Rathore, Prasoon Vishwakarma
pdf
How to Cite?

T. S. Rathore, Prasoon Vishwakarma, "Single CDBA Realization of Inverse Filters," SSRG International Journal of Electronics and Communication Engineering, vol. 8,  no. 8, pp. 1-3, 2021. Crossref, https://doi.org/10.14445/23488549/IJECE-V8I8P101

Abstract:

A new single CDBA configuration is introduced, which can realize all the five generic inverse filters. Capacitors are either actually grounded or virtually grounded.

Keywords:

CDBA, inverse filter functions, inverse low pass filter, inverse high pass filter, inverse bandpass filter, inverse band-reject filter, inverse all-pass filter.

References:

[1] H. -Y. Wang and C. T. Lee, Using nullors for the realization of current-mode FTFN-based inverse filters Electron. Lett. 35() (1999) 1889-.
[2] B. Chipipop and W. Surakampontorn, Realisation of current-mode FTFN-based inverse filter, Electron. Lett. 35(9)(1999) 690– 692
[3] M. T. Abuelma'atti, A novel multifunction CFOA-based inverse filter, Frequenz 54() (2000) 284.
[4] S. S. Gupta, D. R. Bhaskar, R. Senani, and A. K. Singh, Inverse active filters were employing CFOAs Electr. Eng. 91 (23) (2009).
[5] S. S. Gupta, D. R. Bhaskar, and R. Senani, New analog inverse filters realized with current-feedback op-amps, Int. J. Electron. 98() (2011) 1103-1113.
[6] H. -Y. Wang, S. -H. Chang, T. -Y. Yang, and P. -Y. Tsai, A Novel Multifunction CFOA-Based Inverse Filter, Circuits Syst., 2(1) (2011) 14-17.
[7] V. Patil and R. K. Sharma, Novel inverse active filters were employing CFOA., Int. J. Sci. Res. Dev. 3(2015) 359-360.
[8] N. Herencsar, A. Lahiri, J. Koton, and K. Vrba, Realizations of second-order inverse active filters using minimum passive components and DDCCs, Proc. of 33rd Int. Conf. on Telecommunications and Signal Process.-TSP, (2010) 38-41.
[9] T. Tsukutani, Y. Sumi, and N. Yabuki, Electronically tuneable inverse active filters were employing OTAs and grounded capacitors, Int. J. of Electron. Lett. 4(2014) 166–176.
[10] C. K. Choubey, G. Tiwari, and S. K. Paul, CCII based multifunction inverse filter Int. Conf. on Adv. in Electron. Commun. and Comp. Technol., 2(16) (2016) 160-163
[11] T. Tsukutani, Y. Kunugasa, and N. Yabuki, Inverse Band Reject and All-Pass Filter Structure Employing CMOS CDBAs, J. Electr. Eng., 8(9), (2019) 39-44.
[12] P. Kumar, N. Pandey, and S. K. Paul, Realization of resistor less and electronically tunable inverse filters using VDTA, J. Circuits, Syst. Comp. 28() (2018).
[13] A. K. Singh, A. Gupta, and R. Senani, OTRA-based multi-function inverse filter configuration, Adv. in Elect. And Electron. Eng. 15() (2018) 846-856.
[14] A. Pradhan and R. K. Sharma, Generation of OTRA-based inverse all pass and inverse band-reject filters, Proc. Natl. Acad. Sci. India, Sect. A Phys. Sci. 90() (2020). 481-491.
[15] S. Banerjee, M. Ghosh, and P. Mondal, the realization of inverse active filters using a single current differencing buffered amplifier, Int. Conf. on Commun. and Signal Process. 148 (2019).
[16] J. K. Pathak, A. K. Singh, and R. Senani, New canonic lossy inductor using a single CDBA and its application, Int. J. Electron. 103(1) (2015).
[17] A. R. Nasir and S. N. Ahmad, A novel current-mode multifunction inverse filter using single CFA Int. J. Innovative Technology and Exploring Engineering, 10(8) (2021) 64-67.
[18] R. Pandey, N. Pandey, T. Negi, and V. Garg, CDBA based universal inverse filter, ISRN Electronics, (2013) 1-6.
[19] R. Bhagat, D. R. Bhaskar, and P. Kumar, Inverse band reject and all-pass filter structure employing CMOS CDBAs, Int. J. Eng. Res. Technol., 8(9) (2019) 39-44.
[20] R. Bhagat, D. R. Bhaskar, and P. Kumar, Multifunction filter/inverse filter configuration employing CMOS CDBAs, Int. J. Recent Technol. Eng., 8(4) (2019) 8844-8853.
[21] T. K. Paul, S. Roy, R. R. Pal, Realization of inverse active filters using the single current differencing buffered amplifier, J. Sci. Res., 13(1)(2021) 85-99.
[22] C. Acar and S. Ozoguz, A new versatile building block: current differencing buffered amplifier suitable for analog signal processing filters, Microelectron, J., 30(2) (1999) 157-160.