Control the Chaotic Rikitake System by PID Controller

International Journal of Electrical and Electronics Engineering
© 2015 by SSRG - IJEEE Journal
Volume 2 Issue 11
Year of Publication : 2015
Authors : Mojtaba Chavooshi Zade
pdf
Citation:
MLA Style:

Mojtaba Chavooshi Zade, " Control the Chaotic Rikitake System by PID Controller" SSRG International Journal of Electrical and Electronics Engineering 2.11 (2015 ): 1-4.

APA Style:

Mojtaba Chavooshi Zade,(2019). Control the Chaotic Rikitake System by PID Controller. SSRG International Journal of Electrical and Electronics Engineering 2(11), 1-4.

Abstract:

 In this paper a PID controller for the Chaos Rikitake system is introduced. The mathematical model of the Rikitake system consists of three nonlinear differential equations, which are found to be the same as the mathematical model of the well known Lorenz system. The study showed that the system is experiencing a chaotic behavior at certain value of the control parameter. The experienced chaotic oscillations may simulate the reversal of the Earth’s magnetic field. The Proportional - Integral - Derivative (PID) controller is one of the most popular controllers used in industry because of their remarkable effectiveness, simplicity of implementation and broad applicability. In this paper the behavior of chaotic Rikitake system is investigated, after that a PID controller is implemented to achieve the stability of system. Simulation results illustrate the effectiveness and validity of the proposed approach.

References:

[1] Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems.Phys. Rev. Lett. 64, 821–825, 1990.
[2] E. Ott, C. Grebogi and J.A. Yorke, Controlling chaos, Phys. Rev.Lett., 64, 1196-1199, 1990.
[3] Carlos Aguilar-Ibañez, Rafael Martinez-Guerra,Ricardo Aguilar-López, Juan L. Mata-Machuca, Synchronization and parameter estimations of an uncertain Rikitake system, Physics Letters A 374, 3625–3628, 2010.
[4] Mohammad Ali Khan,Different Synchronization Schemes for chaotic Rikitake Systems ,Journal of Advanced Computer Science and Technology, 1 (3), 167-175, 2012.
[5] Morgul O, Solak E, Observed based synchronization of chaotic systems, Phys Rev E, 54, 4803-4811, 1996.
[6] Wen Yu, High-gain Observer for chaotic synchronization and secure communication, International Journal Bifurcation and Chaos. 18, 487-500, 2005.
[7] R. Femat, J. Alvarez-Ram´─▒rez, G. Fern´andez-Anaya, Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization, Phisica D. 139, 231-246, 2000.
[8] Femat, R., Solis-Perales, G.: On the chaos synchronization phenomena. Phys. Lett. A 262, 50–60, 1999.
[9] Park, J.H., Ji, D.H., Won, S.C., Lee, S.M.: Adaptive H∞ synchronization of unified chaotic systems. Mod. Phys. Lett. B 23, 1157–1169, 2009.
[10] Huang, H., Feng, G., Sun, Y.: Robust synchronization of chaotic systems subject to parameter uncertainties. Chaos 19, 033128, 2009.
[11] Yajima, T., Nagahama, H.: Geometrical unified theory of Rikitake system and KCC-theory. Nonlinear Anal. 71, e203–e210, 2009.
[12] Liu Xiao-jun, Li Xian-feng, Chang Ying-xiang, Zhang Jiangang. Chaos and Chaos Synchronism of the RikitakeTwo- Disk Dynamo.Fourth International Conference on Natural Computation, IEEE computer Society,DOI10.1109/ICNC.2008.706:613-617, 2012.
[13] T. McMillen. The shape and dynamics of the Rikitake attractor. The Nonlinear Jour., 1,pp1-10, 1999.
[14] Mohammad Javidi, Nemat Nyamorad, Numerical Chaotic Behavior of the Fractional Rikitake System, World Journal of Modelling and Simulation, Vol. 9 No. 2, pp. 120-129, 2013.
[15] J. Llibre, M. Messias. Global dynamics of the Rikitake system.Physica D, 238,pp:241-252, 2009.
[16] C.-C. Chen, C.-Y. Tseng. A study of stochastic resonance in the periodically forced Rikitake dynamo. Terr. Atmos.Ocean. Sci., 18(4), pp: 671-680, 2007.
[17] Ahmad Harb, Bassam Harb. Chaos control of third-order phase-locked loops using backstepping nonlinear controller.Chaos, Solitons & Fractals, 20(4), 2004.
[18] Ahmad Harb, Nabil Ayoub, Nonlinear Control of Chaotic Rikitake Two-Disk Dynamo, International Journal of Nonlinear Science ,Vol.15, No.1, pp.45-50, 2013.
[19] U.E. Vincent, R. Guo, Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller, Physics Letters A 375 pp: 2322–2326, 2011.
[20] Park, J.H., Ji, D.H., Won, S.C., Lee, S.M.: Adaptive. H∞ synchronization of unified chaotic systems. Mod. Phys. Lett. B 23, 1157–1169, 2009.
[21] Jeong, S.C., Ji, D.H., Park, J.H., Won, S.C.: Adaptive synchronization for uncertain complex dynamical network using fuzzy disturbance observer. Nonlinear Dyn. 71, 223- 234, 2013.
[22] Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 15, 116–132, 1995.
[23] Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14, 676– 697, 2006.
[24] GHOLIPOUR, Y. "A REVIEW ON COMPARISION OF THE EFFECT OF I AND PI CONTROLLER ON A QUADRUPLE-TANK PROCESS."International Journal of Engineering Vol.6, No.01, pp. 13-16, 2015.
[25] Wu, S.-J.: Affine TS-model-based fuzzy regulating/servo control design. Fuzzy Sets Syst. 158, 2288–2305, 2007.
[26] David E. Goldberg, “Genetic algorithms in search, optimization, and machine learning”, Addison-Wesley Pub. Co., 1989.
[27] Genetic Algorithm and Direct Search Toolbox user’s guide retrieved from: http://www.mathworks.com/access/helpdesk_r13/help/pdf_d oc/gads/gads_tb.pdf
[28] Randy L. Haupt, Sue Ellen Haupt.” Practice Genetic Algorithm “Second Edition, A JOHN WILEY & SONS, INC., PUBLICATION, 2004.
[29] Gholipour, Y. and Mahmood M., "Investigation stability of Rikitake system." Journal of Control Engineering and Technology 4.1, 2014.
[30] Tsuneji Rikitake. Oscillations of a system of disk dynamos. Mathematical Proceedings of the Cambridge Philosophical Society, doi:10.1017/S0305004100033223, Vol.54, pp. 89- 105, 1958.
[31] JOHN H. MATHEWS AND W. K. GARDNER_1968, “Field Reversals of "Paleomagnetic" Type in Coupled Disk Dynamos”, U.S. NAVAL RESEARCHLABORATORY, Washington, D.C, 1968.
[32] Gholipour Y., Shams E.M., “Introduction new combination of zero-order hold and first-order hold”, Vol.5, No.2, pp.1269-1272, 2014.
[33] Gholipour, Y., Ramezani A., Mola A. “Illustrate the Butterfly Effect on the Chaos Rikitake system”, Bulletin of Electrical Engineering and Informatics, Vol.3, No.4, 2014.
[34] Gholipour, Y., Mola, M. STABILIZATION OF CHAOS RIKITAKE SYSTEM BY USE OF FUZZY CONTROLLER. SCIENCE INTERNATIONAL-LAHORE, Vol.27, No.1, pp.115-119, 2015.
[35] Gholipour, Y., Chavooshi Zade, M.; “REPLACEMENT UNSTABLE TRANSMISSION ZEROS FOR A NON MINIMUM PHASE QUADRUPLE-TANK PROCESS”. SCIENCE INTERNATIONAL-LAHORE Vol.27 No.2, pp.1097-1100, 2015.

Key Words:

Chaos, Rikitake system, Sinusoid, Stability, PID controller.