Electron Trajectories from One Bohr-Sommerfeld Orbit to Another One

International Journal of Applied Physics
© 2021 by SSRG - IJAP Journal
Volume 8 Issue 3
Year of Publication : 2021
Authors : Vasil Angelov
: 10.14445/23500301/IJAP-V8I3P101

pdf
Citation:
MLA Style:

Vasil Angelov, "Electron Trajectories from One Bohr-Sommerfeld Orbit to Another One" SSRG International Journal of Applied Physics 8.3 (2021): 1-13.

APA Style:

Vasil Angelov,(2021). Electron Trajectories from One Bohr-Sommerfeld Orbit to Another One. SSRG International Journal of Applied Physics 8(3), 1-13.

Abstract:

In previous papers we have studied 3D two-body problem of classical electrodynamics based on the extended Synge’s model (with a new form of the Dirac radiation term) and proved an existence-uniqueness of a periodic orbit . Later we have investigated the Kepler problem for of two charched particles using polar coordinates ̶in the plain of motion. In this way we have showed an existence of the Bohr-Sommerfeld stationary states. Here we show an existence of orbits of transition of the moving particle (electron) from one stationaty state to another one. This is made by a suitable choice of function space and applying the fixed ponit method.

References:

[1] V. G. Angelov, On the original Dirac equations with radiation term, Libertas Mathematica (Texas). 31 (2011) 57-86.
[2] V. G. Angelov, Two-body problem of classical electrodynamics with radiation terms ‒ derivation of equations (I), International Journal of Theoretical and Mathematical Physics. 5(5) (2015) 119-135.
[3] V. G. Angelov, Two-body problem of classical electrodynamics with radiation terms ‒ periodic solutions (II), International Journal of Theoretical and Mathematical Physics. 6(1) (2016) 1-25.
[4] V. G. Angelov, Periodic solution of two-body problem of classical electrodynamics with radiation terms, Current Approaches in Science and Technology Research (International Book). 12, Chapter 5 (2021) 42-68.
[5] V. G. Angelov, Periodic solutions of the Kepler problem for two charged particles with radiation terms, Further Applied Mathematics. 1(2) (2021)16-33.
[6] J. L. Synge, On the electromagnetic two-body problem, Proceedings Royal Society (London). A 177(1940) 118-139.
[7] W. Pauli, Relativitatstheorie, Encyklopedie der Mathematischen Wissenschaften, 5(4) Art. 19 (1921).
[8] N. Bohr, Atomic Theory and Description of Nature. Cambridge University Press, Teddington, England (1934).
[9] A. J. W. Sommerfeld, Atombau und Spektrallinien. Band 1, Friedr. Vieweg & Sohn, Braunschweig (1951).
[10] A. J. W. Sommerfeld, Atombau und Spektrallinien. Band 2, Friedr. Vieweg & Sohn, Braunschweig (1951).
[11] A. J. W. Sommerfeld, Electrodynamics, Lectures on Mathematical Physics, Academic Press (1952).
[12] Bauer, G., D.-A. Deckert, D. Durr, and G. Hinrichs, On irreversibility and radiation in classical electrodynamics of point particles, Journal of Statistical Physics. 154(1-2):610 (2014) 12 pages.
[13] D.-A. Deckert, D. Durr, and N. Vona, Delay equations of the Wheeler-Feynman type, in Proceedings of the Sixth International Conference on Differential and Functional-Differential Equations (Moscow, August 14-21, (2011), Part 3, Journal of Contemporary Mathematics. Fundamental Directions, 47:46 (2013) 13 pages.
[14] G. Bauer, D.-A. Deckert, and D. Durr, On the existence of dynamics in Wheeler-Feynman electromagnetism, Journal of Applied Mathematics and Physics. 64(4) (2012) 1087-1124.
[15] J. de Luca, Variational electrodynamics of atoms. Progress in Electromagnetism Research, B, July (2013) 1-11.
[16] I. Simaciu, and C. Ciubotariu, Classical model of electron in stochastic electrodynamics, Revista Mexicana de Fisica. 47 (4), (2001), 392-394.
[17] I. Simaciu, Gh. Dumitrescu, and M. Dinu, New results in stochastic physics, Romanian Reports in Physics. 47(6-7) (1995), 537-556.
[18] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics. Leningrad: Leningrad University Press (1950).
[19] L. Schwartz, Theorie des Distributiones. Tome I. Paris: Hermann (1950).
[20] L. Schwartz, Theorie des Distributiones. Tome II. Paris: Hermann (1951).
[21] H. J. Bremermann, Distributions, Complex Variables and Fourier Transforms. Massachusetts (1965).
[22] V. Kecs, and P. P. Teodorescu, Introduction to the Distribution Theory with Applications in Technique. Editura Tehnica, Bucuresti (1975).
[23] V. G. Angelov, Fixed Points in Uniform Spaces and Applications. Cluj University Press, Cluj-Napoca, Romania (2009).
[24] R. W. Pohl, Optik und Atmohysik. Springer Verlag (1963).
[25] V. G. Angelov, Two-body problem of classical electrodynamics-with radiation terms-energy estimation (III), International Journal of Theoretical and Mathematical Physics. 6(2) (2016) 78-85.
[26] G. Bei, A hidden variable model of hydrogen energy spectra, SSRG International Journal of Applied Physics. 8(1) (2021) 44-46.

Key Words:

Bohr-Sommerfeld stationary state, fixed point method, Kepler problem, operator method for transition orbits, two-body problem of classical electro-dynamics.