Specific Loss Power in Magnetic Hyperthermia: Comparison of Monodispersion and Polydispersion

International Journal of Applied Physics
© 2017 by SSRG - IJAP Journal
Volume 4 Issue 1
Year of Publication : 2017
Authors : Kenya Murase

pdf
How to Cite?

Kenya Murase, "Specific Loss Power in Magnetic Hyperthermia: Comparison of Monodispersion and Polydispersion," SSRG International Journal of Applied Physics, vol. 4,  no. 1, pp. 1-9, 2017. Crossref, https://doi.org/10.14445/23500301/IJAP-V4I1P101

Abstract:

Magnetic hyperthermia (MH) is a promising approach to cancer therapy that uses the heat released by magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF). Since the existence of some size polydispersity of MNPs is experimentally unavoidable, the size polydispersity is important for achieving an accurate control of the heating performance of MNPs. The purpose of this study was to investigate the effect of the size polydispersity on the specific loss power (SLP) in MH under various conditions of MNPs, AMF, and static magnetic field (SMF). The SLP value in the quasi steady state (SLPqss)for the polydisperse case was computed using the probability density function based on a log-normal distribution. The SLPqss value was largely affected by the size polydispersity and its dependency on the size polydispersity changed depending on the magnetic and physical properties of MNPs and the parameters of AMF. The plot of the SLPqss values against the position from a field-free pointwas also affected by the size polydispersity.Our resultssuggest that it is essential to considerthe size polydispersityfor the accurate estimation of SLP and for accurately controlling the temperature rise and the area of local heating in MHusing SMF

Keywords:

Magnetic hyperthermia, magnetic nanoparticle, specific loss power, monodispersion, polydispersion, log-normal distribution

References:

[1] A. Jordan, R. Scholz,K. Maier-Hauff, M. Johannsen, P. Wust, J. Nodobny, H. Schirra, H. Schmidt, S. Deger, S. Loening, W. Lanksch, and R. Felix,“Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia,”J. Magn. Magn. Mater., vol. 225, pp. 118-126, 2001.
[2] K. Murase, M. Aoki, N. Banura, K. Nishimoto, A. Mimura, T. Kuboyabu, andI. Yabata, “Usefulness of magnetic particle imaging for predicting the therapeutic effect of magnetic hyperthermia,”Open J. Med. Imaging,vol. 5,pp. 85-99, 2015.
[3] T. Kuboyabu, I. Yabata, M. Aoki, N. Banura, K. Nishimoto, A. Mimura, andK. Murase, “Magnetic particle imaging for magnetic hyperthermia treatment: visualization and quantification of the intratumoral distribution and temporal change of magnetic nanoparticles in vivo,”Open J. Med. Imaging, vol. 6,pp. 1-15, 2016.
[4] T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, and B. von Rechenberga,“Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system,”J. Magn. Magn. Mater., vol. 293, pp. 483-496, 2005.
[5] S. Maruyama, K. Shimada, K. Enmeiji, andK. Murase, “Development of magnetic nanocarriers based on thermosensitive liposomes and their visualization using magnetic particle imaging,”Int. J. Nanomed. Nanosurg., vol.2, pp. 1-11, 2016.
[6] J. H. Lee, J. T. Jang, J. S. Choi, S. H. Moon, S. H. Noh, J. W. Kim, I. S. Kim, K. I. Park, andJ. Cheon, “Exchange-coupled magnetic nanoparticles for efficient heat induction,”Nat. Nanotechnol.,vol. 6,pp. 418-422, 2011.
[7] R. E. Rosensweig, “Heating magnetic fluid with alternating magnetic field,”J. Magn. Magn. Mater., vol.252, pp. 370-374, 2002.
[8] K. Murase,“Methods for estimating specific loss power in magnetic hyperthermia revisited,”Open J. Appl. Sci., vol. 6, pp. 815-825, 2016.
[9] T. O. Tasci, I. Vargel, A. Arat, E. Guzel, P. Korkusuz, andE. Atalar, “Focused RF hyperthermia using magnetic fluids,”Med. Phys.,vol. 36, pp. 1906-1912, 2009.
[10] K. Murase, H. Takata, Y. Takeuchi, and S. Saito,“Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field,”Phys. Med., vol. 29, pp. 624- 630, 2013.
[11] K. Murase,“A simulation study on the specific loss power in magnetic hyperthermia in the presence of a static magnetic field,”Open J. Appl. Sci., vol. 6, pp. 839-851, 2016.
[12] M. I. Shliomis, “Effective viscosity of magnetic suspensions,”Sov. Phys. JETP,vol. 34,pp. 1291-1294, 1972.
[13] C. Munoz-Menendez, I. Conde-Leboran, D. Baldomir, O. Chubykalo-Fesenko, and D. Serantes,“The role of size polydispersity in magnetic fluid hyperthermia: average vs. local infra/over-heating effects,”Phys. Chem. Chem. Phys., vol. 17, pp. 27812-27820, 2015.
[14] C. Munoz-Menendez, I. Conde-Leboran, D. Serantes, R. Chantrell, O. Chubykalo-Fesenko, and D. Baldomir,“Distinguishing between heating power and hyperthermic cell-treatment efficacy in magnetic fluid hyperthermia,”Soft Matter, vol.12, pp. 8815-8818, 2016.
[15] D. Soto-Aquino andC. Rinaldi, “Magnetoviscosity in dilute ferrofluids from rotational brownian dynamics simulations,”Phys. Rev. E,vol. 82,Article ID: 046310, 2010.
[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, andB. P. Flannery, Numerical Recipes in C,Oxford, United Kingdom: Cambridge University Press, 1992.
[17] K. Murase, J. Oonoki, H. Takata, R. Song, A. Angraini, P. Ausanai, andT. Matsushita, “Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles,”Radiol. Phys. Technol.,vol. 4,pp. 194-202, 2011.
[18] S. Maenosono andS. Saita, “Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia,”IEEE Trans. Magn.,vol. 42, pp. 1638-1642, 2006.
[19] R. Hergt and S. Dutz,“Magnetic particle hyperthermia — biophysical limitations of a visionary tumour therapy,”J. Magn. Magn. Mater., vol. 311, pp. 187-192, 2007.
[20] A. P. Khandhar, R. M. Ferguson,andK. M. Krishnana,“Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems,”J. Appl. Phys., vol.109, Article ID:07B310, 2011.
[21] M. Gonzales-Weimuller, M. Zeisberger, and K. M. Krishnan,“Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia,”J. Magn. Magn. Mater., vol. 321, pp. 1947-1950, 2009.
[22] M. Jeun, S. Bae, A. Tomitaka, Y. Takemura, K. H. Park, S. H. Paek, and K-W. Chung, “Effects of particle dipole interaction on the AC magnetically induced heating characteristics of ferrite nanoparticles for hyperthermia,”Appl. Phys. Lett., vol. 95, Article ID:082501, 2009.
[23] R. Dhavalikar and C. Rinaldi,“Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients,”J. Magn. Magn. Mater., vol. 419, pp. 267-273, 2016.
[24] M. A. Martsenyuk, Y. L. Raikher, and M. I. Shliomis,“On the kinetics of magnetization of ferromagnetic particle suspension,”Sov. Phys. JETP, vol. 38,pp. 413-416, 1974.