Computational Investigations on CZTS Thin-Film Layers Adopting Grating Structures

International Journal of Electronics and Communication Engineering
© 2019 by SSRG - IJECE Journal
Volume 6 Issue 8
Year of Publication : 2019
Authors : Nosheen Memon, Muhammad Rafique Naich, Agha Zafarullah Pathan, Baqir Ali Mirjat, Muzamil Faiz
pdf
How to Cite?

Nosheen Memon, Muhammad Rafique Naich, Agha Zafarullah Pathan, Baqir Ali Mirjat, Muzamil Faiz, "Computational Investigations on CZTS Thin-Film Layers Adopting Grating Structures," SSRG International Journal of Electronics and Communication Engineering, vol. 6,  no. 8, pp. 38-43, 2019. Crossref, https://doi.org/10.14445/23488549/IJECE-V6I8P106

Abstract:

In the past few years, Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) has attracted significant attention as a next-generation absorber material for the production of thin-film solar cells on large scales due to the high natural abundance of all constituents, the tuneable direct bandgap energy ranging from 1.0 to 1.5 eV, and significant absorption coefficient. Copper zinc tin sulfide (CZTS) is a promising material for use at a low cost.
In this work, simulations were performed on CZTS thin-film solar cell (TFSC) using the FDTD method; the Continuous Gaussian Wave of 1.55 wavelength light incident input applied. Three different methods performed in simulations. Results indicated that the heat absorption efficiency of the solar cell increased when grating structures are designed to be on the surface of the solar cells. The efficiency was increased by 17.64%. It observed that when the grating period “k” is varied, the absorption efficiency is also varied; higher the grating period lower the absorption efficiency and vice versa. The weighted reflectance of the CZTS TFSCs having grating structure reduced to 1% of the value. It also observed that maximum absorption efficiency occurs at lower wavelengths of 480nm to 800nm. When the wavelength increased beyond, then there is no noticeable change in its effectiveness.

Keywords:

CZTS, TFSC, FDTD method, Adopting Grating Structures, solar cell

References:

[1] Woo, K., Kim, Y., & Moon, J., “A non-toxic, solution-processed, earth-abundant absorbing layer for thin-film solar cells,” Energy & Environmental Science, vlo.5.1, pp. 5340-5345 (2012).
[2] Lohmüller, T., Helgert, M., Sundermann, M., Brunner, R., &Spatz, J. P., “Biomimetic interfaces for high-performance optics in the deep-UV light range,” Nano Letters, vol. 8.5, pp.1429-1433, (2008).
[3] Chhajed, S., Schubert, M. F., Kim, J. K., & Schubert, E. F., “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Applied Physics Letters, vol.93.25, pp.251-108, (2008).
[4] Lai, F. I., Chen, W. Y., Kao, C. C., Kuo, H. C., & Wang, S. C., “Light-output enhancement of GaN-based light-emitting diodes by photoelectrochemical oxidation in H2O,” Japanese Journal of applied physics, vol. 45. 9R, pp. 6927, (2006).
[5] Song, Y. M., Jang, S. J., Yu, J. S., & Lee, Y. T., “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small, vol.6.9, pp. 984-987, (2010).
[6] Walheim, S., Schäffer, E., Mlynek, J., & Steiner, U., “Nanophase-separated polymer films as high-performance antireflection coatings,” Science, vol.283.5401, pp.520-522. (1999).
[7] Huang, Y. F., Chattopadhyay, S., Jen, Y. J., Peng, C. Y., Liu, T. A., Hsu, Y. K., ... & Lee, C. S., “Improved broadband and quasi-omnidirectional antireflection properties with biomimetic silicon nanostructures,” Nature nanotechnology, vol.2.12, pp.770, (2007).
[8] Tsai, M. A., Tseng, P. C., Chen, H. C., Kuo, H. C., & Yu, P., “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Optics Express, vol.19.101, pp.A28-A34, (2011).
[9] Poitras, D., &Dobrowolski, J. A., “Toward perfect antireflection coatings. 2. Theory,” Applied optics, vol. 43.6, pp.1286-1295, (2004).
[10] Oliva, E., Dimroth, F., &Bett, A. W., “GaAs converters for high power densities of laser illumination,” Progress in Photovoltaics: Research and Applications, vol.16.4, pp.289-295, (2008).
[11] Basu, S., Chen, Y. B., & Zhang, Z. M., “Microscale radiation in thermophotovoltaic devices—a review,” International Journal of Energy Research, vol.31.6‐7, pp. 689-716. (2007).
[12] Khezripour, Z., Mahani, F. F., &Mokhtari, A. (2018, March). Optimized design of silicon-based moth eye nanostructures for thin film solar cells. In 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (pp. 1-4). IEEE.
[13] Xie, S., Wan, X., Yang, B., Zhang, W., Wei, X., &Zhuang, S. (2019). Design and Fabrication of Wafer-Level Microlens Array with Moth-Eye Antireflective Nanostructures. Nanomaterials, 9(5), 747.
[14] Oloomi, S. A. A., Saboonchi, A., &Sedaghat, A., “Effects of Thin Films’ Number on Nano Scale Radiative Properties,” World Applied Sciences Journal, vol.11.11, pp.1398-1402, (2010).
[15] Guo, Q., Ford, G. M., Yang, W. C., Walker, B. C., Stach, E. A., Hillhouse, H. W., &Agrawal, R., “Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals,” Journal of the American Chemical Society, vol.132.49, pp.17384-17386. (2010).
[16] Hossain, M. I., Chelvanathan, P., Alam, M. M., Akhtaruzzaman, M., Sopian, K., & Amin, N. (2013, November). Potential buffer layers for Cu 2 ZnSnS 4 (CZTS) solar cells from numerical analysis. In 2013 IEEE Conference on Clean Energy and Technology (CEAT) (pp. 450-454). IEEE.
[17] Jimbo, K., Kimura, R., Kamimura, T., Yamada, S., Maw, W. S., Araki, H., &Katagiri, H., “Cu2ZnSnS4-type thin-film solar cells using abundant materials,” Thin solid films, vol.515.15, pp.5997-5999, (2007).
[18] Rana, T. R., Shinde, N. M., & Kim, J., “Novel chemical route for chemical bath deposition of Cu2ZnSnS4 (CZTS) thin films with stacked precursor thin films,” Materials Letters, vol. 162, pp.40-43, (2016).
[19] Vanalakar, S. A., Agawane, G. L., Shin, S. W., Suryawanshi, M. P., Gurav, K. V., Jeon, K. S., ... & Kim, J. H., “A review on pulsed laser deposited CZTS thin films for solar cell applications,” Journal of Alloys and Compounds, vol.619, pp.109-121, (2015).
[20] Lee, B. J., Zhang, Z., Early, E. A., DeWitt, D. P., & Tsai, B. K., “Modelingradiative properties of silicon with coatings and comparison with reflectance measurements,” Journal of thermophysics and heat transfer, vol.19.4, pp.558-565, (2005).
[21] Nosheen Memon , Muhammad Rafique Naich , Agha Zafarullah Pathan , Baqir Ali Mirjat, "Computational Investigations on Thin Film Layers using SOI Grating Structures" SSRG International Journal of Electronics and Communication Engineering 6.5 (2019): 48-53.
[22] Nilambar Muduli, J.S.N Achary, "Analysis and Comparison of Liquid Sensing using Silica and BK7 Material PCF by 2D FDTD Method" SSRG International Journal of Applied Physics 5.3 (2018): 22-28.