Effect of Rapid Thermal Anneling on Electrical Properties of Er/P-Inp Schottky Barrier Diode

International Journal of Electronics and Communication Engineering
© 2015 by SSRG - IJECE Journal
Volume 2 Issue 7
Year of Publication : 2015
Authors : P. Seshu Mani and Prof. P. Narasimha Reddy,
How to Cite?

P. Seshu Mani and Prof. P. Narasimha Reddy,, "Effect of Rapid Thermal Anneling on Electrical Properties of Er/P-Inp Schottky Barrier Diode," SSRG International Journal of Electronics and Communication Engineering, vol. 2,  no. 7, pp. 34-40, 2015. Crossref, https://doi.org/10.14445/23488549/IJECE-V2I7P113


The temperature dependence of Current – Voltage (I-V) and Capacitance - Voltage (C-V) characteristics of Er Schottky contact on P-InP Schottky Barrier Diodes (SBD’s) have been systematically investigated in the temperature range of 180-420K in the step of 40K. The Schottky Barrier Heights (SBHs) of Er Schottky contact P-InP for as deposited sample in Current - Voltage (I-V) characteristics is 0.71 eV and in Capacitance - Voltage (C-V) characteristics is 0.96 eV. By increasing temperature from 180 - 300 K the schottky barriers height decreases and then increases by increasing the temperature in the range 340-420K.


Er Schottky , Annealing temperature


[1]M. Sovlu, B. Abay, Microelectronic Engineering. 86 (2009) 25240.
[2]N. Kirnot and Yoran Shapira, Physical review B. 65 (2002) 245303.
[3]Zhang Kefeng, Tang Hengjing, wu xiaoli, xu Jintong, Li xue, Gong Haimei Proc. Of SPIE. 6621 (2008) 662118. 
[4]Bernadett Varga, Antal Urmos, Szilvia Nagy, Imre Mojzes, Vaccum. 84 (2007) 247. 
[5]G.W. Turner, J.C.C. Fan and J.J. Hsich, Appl. Phys. Lett. 37 (1980) 400. 
[6]A. Yamamoto, M. Yamaguchi and C. Vemura, Appl. Phys. Lett. 44 (1984) 611. 
[7]T.J. Coutts and S. Naseem, Appl. Phys. Lett 46 (1985) 164.
[8]Zhang Guicheng, Cheng Zong Quan, Yu Zhizhang, Journal of electronics. 4 (1987) 3.
[9]C.S. Wu, D.M. Scott, W.X. Chen and S.S. Lau, J. Electrochem. Soc. 132 (19850 918. 
[10]Z.M. Wang, Y.X. Zhang, K. Wu, M.E. Yuon, W.X. Chen and C.G. Qin. (unpublished). 
[11]W.X. Chen M.H. Yuan, K.Wu, Y.X. Zhang, Z.M. Wang and G.G. Qin, J. Appl. Phys. 78 (1995) 584.
[12]N.G. Chu, A. Kutz, T. Boone, P.M. Thomas, V.G. Riggs, W.C. Dautremont – Smit and W.D. Johnston, Jr, J. Appl. Phys. 67 (1990) 3754. 
[13]J.B. Boos, W. Kruppa, and N.A. Papanicolacu, Thin solid films. 162 (1988) 161. 
[14]T. Clausen and O. Leistiko, Appl. Phys. Lett. 62 (1993) 1108. 
[15]M. Solvu and B. Abay, Microelectronic Engineering 86 (2009) 25240. 
[16]SM Sze, Physics of Semiconductor devices 2nd (reprint), John Wiley & Sons, New York, (2007). 
[17]E.H. Rhoderick, R.H. Williams, Metal Semiconductor contacts, 2nd Edn. Clarendon press, oxford (1998). 
[18]Sezai Asubay, Omer Gullu, Bahattin Abay, Abdul mecit turut and Ali Yilmaz, Semicond. Sci. Technol. 23 (2008) 035006. 
[19]S Asubay, O Gullu, A Turut, Vaccum. 88 (2009) 1470. 
[20]A. Gumus, A. TURUT, Y. Yalcin, J. Appl. Phys. 91 (2002) 245. 
[21]J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70 (1991) 7403. 
[22]R.T. Tung, Phys, Rev. B 45 (1992) 13509. 
[23]S. Aydogan, M. Saglam, A. Turut, Appl. Surf. Sci. 250 (2005) 43. 
[24]C.W. Wilmsen, Physics and Chemistry III-V Compound Semiconductor interfaces, plenum press, New York (1985). 
[25]H. Norde, J. Appl. Phys. 50 (1979) 5052.