Shared Hardware Resources through Internet for Remote Experiments in Electronics and Electricity

International Journal of Electrical and Electronics Engineering
© 2020 by SSRG - IJEEE Journal
Volume 7 Issue 10
Year of Publication : 2020
Authors : Yassine Larbaoui, Ahmed Naddami, Ahmed Fahli
How to Cite?

Yassine Larbaoui, Ahmed Naddami, Ahmed Fahli, "Shared Hardware Resources through Internet for Remote Experiments in Electronics and Electricity," SSRG International Journal of Electrical and Electronics Engineering, vol. 7,  no. 10, pp. 1-11, 2020. Crossref,


This paper presents the importance of sharing hardware platforms between educational establishments for remote experimenting. In addition, it presents the principal pillars to adapt hardware resources and deploy shared hardware platforms for remote experiments through the Internet. Moreover, we present developed structures of a shared hardware platform of VISIR system, to share the exploit of our optimized resources of VISIR through the Internet; to be exploited by different establishments while using their own access platforms and their own web-user interfaces, which we propose in this paper as prepackaged auto-installers of optimized software to be used by potential exploiters.


Decentralized network, remote control, remote experiments, shared hardware platform


[1] M. W. Rodrigues, L. E. Zárate, S. Isotani, “Educational Data Mining: A review of the evaluation process in the e-learning,” Telemat. Inform. , Vol. 35, pp. 1701-1717, Sep. 2018.
[2] M. Aparicio, F. Bacao, T. Oliveira, “Grit in the path to e-learning success,” J. Comput. Hum. Behav., Vol. 66, pp. 388-399, Jan. 2017.
[3] O. Said, Y. Albagor, “Internet of Things-Based Free Learning System: Performance Evaluation and Communication Perspective,” IETE Journal of Research, pp. 31-44, 2016.
[4] R. Heradio, L. de la Torre, D. Galan, F. J. Cabrerizo, E. H. Viedma, S. Dormido, “Virtual and remote labs in education: A bibliometric analysis,” Comput. Educ., Vol. 98, pp. 14-38, Jul. 2016.
[5] S. W. Director, A. W. Westerberg, M. R. Lightner, “Simulation Procedures for Large-Scale Electronic Systems,” IETE Journal of Research, pp. 271-285, 2015.
[6] S. Rapuano, F. Zoino, “A learning management system including laboratory experiments on measurement instrumentation,” IEEE Trans. Instrum. Meas., Vol. 55, pp. 1757–1766, Oct. 2006.
[7] J.A. Asumadu, R. Tanner, J. Fitzmaurice, M. Kelly, H. Ogunleye, J. Belter, S.C. Koh, “A web-based electrical and electronics remote wiring and measurement laboratory (RwmLAB) instrument,” IEEE Trans. Instrum. Meas., Vol. 54, pp. 38–44, Feb. 2005.
[8] L. Benetazzo, M. Bertocco, F. Ferraris, A. Ferrero, C. Offelli, M. Parvis, V. Piuri, “A web-based distributed virtual educational laboratory,” IEEE Trans. Instrum. Meas., vol. 49, pp. 349–356, Apr. 2000.
[9] 14M. Corrado, L. De Vitoa, H. Ramosb, J. Saliga, “Hardware and software platform for ADCWAN remote laboratory,” J. Meas, Vol. 45, pp. 795–807 May. 2012.
[10] L.S. Indrusiak, M. Glesner, R. Reis, “On the evolution of remote laboratories for prototyping digital electronic systems,” IEEE Trans. Ind. Electron., Vol. 54, pp. 3069–3077, Nov. 2007.
[11] J. Saenz, J. Chacon, L. la Torre, S. Dormido, “An open software - open hardware lab of the air levitation system,” IFAC-PapersOnLine, vol. 50, pp. 9168-9173, Jul. 2017.
[12] A. Melkonyan, A. Gampe, M. Pontual, G. Huang, D. Akopian, “Facilitating remote laboratory deployments using a relay gateway server architecture,” IEEE Trans. Ind. Electron., Vol. 61, pp. 477–485, Jan. 2014.
[13] F. Barreto, V. Benitti, “Exploring the educational potential of robotics in schools: A systematic review.” Comput. Educ., Vol. 58, pp. 978–988, Apr. 2012.
[14] J. P. C. de Lima, L. M. Carlos, J. P. S. Simão, J. Pereira, P. M. Mafra, J. B. Silva, “Design and implementation of a remote lab for teaching programming and robotics,” IFAC-PapersOnLine, vol. 49, pp. 86-91, 2016.
[15] W. Hu, G. P. Liu, H. Zhou, “Web-based 3-D control laboratory for remote real-time experimentation,” IEEE Trans. Ind. Electron., Vol. 60, pp. 4673–4682, Oct. 2013.
[16] L. Gomes, S. Bogosyan, “Current trends in remote laboratories,” IEEE Trans. Ind. Electron., Vol. 56, no. 12, pp. 4744–4756, Dec. 2009.
[17] R. Kapadia, “Teaching and learning styles in engineering education,” Presented at the Frontiers in Education (FIE), 38th Annu. Conf., Saratoga Springs, NY, USA, Oct. 22–25, 2008.
[18] L.D. Feisel et al., “Learning objectives for engineering education laboratories,” Presented at the Frontiers in Education (FIE) 32nd Annu. Conf., Boston, MA, USA, Nov. 6-9, 2002.
[19] M. Ghone, M. Schubert, J.R. Wagner, “Development of a mechatronics laboratory-eliminating barriers to manufacturing instrumentation and control,” IEEE Trans. Ind. Electron., Vol. 50, pp. 394–397, Apr. 2003.
[20] M. Tawfik, E. Sancristobal, S. Martin, G. Diaz, J. Peire, M. Castro, “Expanding the boundaries of the classroom: implementation of remote laboratories for industrial electronics disciplines,” IEEE Ind. Electron. Mag., Vol. 7, pp. 41–49, Mar. 2013.
[21] M. Tawfik, S. Monteso, F. G. Loro, P. Losada, J. A. Barba, E. Ruiz, E. Sancristobal, G. Diaz, J. Peire, M. Castro, “Online Experiments With DC/DC Converters Using the VISIR Remote Laboratory,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 10, pp. 310 – 318, 2015.
[22] R. Najimaldeen, G. Ribeiro, A. Pedro, G. I. Gustavsson, “Using uml models to describe the visir system,” International Journal of Online Engineering, Vol. 12, 2016.
[23] U. H. Jayo, J. G. Zubia, “Remote measurement and instrumentation laboratory for training in real analog electronic experiments,” International Journal of Online Engineering, Vol. 12, pp. 123 – 134, 2016.
[24] J. G. Zubia, J. Cuadros, S. R. Yesa, U. Hernandez, P. Orduña, M. Guenaga, I. Gustavsson, “Empirical analysis of the use of the visir remote lab in teaching analog electronics,” IEEE Transactions on Education, vol. 60, pp. 149–156, 2017.
[25] A. Bagnasco, M. Chirico, A. M. Scapolla, “A new and open model to share laboratories on the Internet,” IEEE Trans. Instrum. Meas., vol. 54, pp. 1111–1117, Jun. 2005.
[26] P. Orduña, P. H. Bailey, K. DeLong, D. López-de-Ipiña, J. G. Zubia, “Towards federated interoperable bridges for sharing remote
educational laboratories,” Comput. Hum. Behav., vol. 30, pp. 389-395, Jan. 2014.
[27] J. G. Zubia, P. Orduña, D. López-de-Ipiña, U. Hernández and I. Trueba, “Section III - Remote labs development issues, Remote Laboratories from the Software Engineering point of view,” in Advanceces on remote laboratories and e-learning experiences, Espain, Bilbao, Ed. Universidad de Deusto, 2007, pp. 131-150.
[28] J. G. Zubia, J. Cuadros, S. Romero, U. H. Jayo, P. Orduña, M. Guenaga, L. G. Sabate, I. Gustavsson, “Empirical Analysis of the Use of the VISIR Remote Lab in Teaching Analog Electronics,” IEEE Trans. Educ., vol. 60, pp. 149 – 156, 2017.
[29] G. C.Oproiu, “A T. K.Georgea, K. P. Jacobb, R. K.James, “Token-based Detection and Neural Network-based Reconstruction framework against code injection vulnerabilities,” J. Inform. Secure. Appl., Vol. 41, pp. 75-91, Aug. 2018.
[30] V. R.Mouli, K.P.Jevitha, “Web Services Attacks and Security- A Systematic Literature Review,” Procedia. Comput. Sci. Vol. 93, pp. 870-877, 2016.
[31] G. C.Oproiu, “a study about Using E-learning Platform (Moodle) in University Teaching Process,” Procedia. Soc. Behav. Sci., Vol. 180, pp. 426-432 May. 2015.
[32] Gokulahari.U , Padmavathy.C , Aishwarya.PL, Dhanuu Shri. R.V, "Decentralized Application" SSRG International Journal of Computer Science and Engineering 7.7 (2020): 45-50.