Effects of MQL and MQCL Parameters on Surface Roughness in Hard Milling of SKD 11 Tool Steel

International Journal of Mechanical Engineering
© 2020 by SSRG - IJME Journal
Volume 7 Issue 10
Year of Publication : 2020
Authors : Tran Minh Duc, Tran The Long
pdf
How to Cite?

Tran Minh Duc, Tran The Long, "Effects of MQL and MQCL Parameters on Surface Roughness in Hard Milling of SKD 11 Tool Steel," SSRG International Journal of Mechanical Engineering, vol. 7,  no. 10, pp. 28-31, 2020. Crossref, https://doi.org/10.14445/23488360/IJME-V7I10P106

Abstract:

This paper presents the empirical research on the effects of technological parameters of the two methods MQL and MQCL on surface roughness in hard milling SKD11 tool steel. The factorial experiment design is used to evaluate the influence of each input parameter. The obtained results show that the investigated factors have very little influence on the surface roughness values. This result also provides technology guides for further studies to improve the surface quality of hard milling. In addition, the influence of the parameters is also evaluated in detail.

Keywords:

MQL, MQCL, hard milling, hard machining, difficult-to-cut material, surface roughness

References:

[1] Dong, P.Q.; Duc, T.M.; Long, T.T.; Performance Evaluation of MQCL Hard Milling of SKD 11 Tool Steel Using MoS2 Nanofluid. Metals, 2019, 9, 658, doi:10.3390/met9060658.
[2] Li, B.; Li, C.; Zhang, Y.; Wang, Y.; Jia, D.; Yang, M.; Zhang, Y.; Wu, Q.; Han, Z.; Sun, K,. Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. J. Clean. Prod. 2017, 154, 1–11, doi:10.1016/j.jclepro.2017.03.213.
[3] Nagimova, A.; Perveen, A, A review on Laser Machining of hard to cut materials. Mater. Today Proc. 18 (2019) 2440–2447, doi:10.1016/j.matpr.2019.07.092.
[4] Davim, J.P. Machining of Hard Materials; Springer: London, UK, 2011.
[5] Zhang, K.; Deng, J.; Meng, R.; Gao, P.; Yue, H. Effect of nanoscale textures on cutting performance of W.C./Co-based Ti55Al45N coated tools in dry cutting. Int. J. Refract. Met. Hard Mater. 2015, 51, 35–49, doi:10.1016/j.ijrmhm. 2015.02.011.
[6] Xing, Y.; Deng, J.; Zhao, J.; Zhang, G.; Zhang, K.. Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel. Int. J. Refract. Met. Hard Mater. 2014, 43, 46–58, doi:10.1016/j.ijrmhm.2013.10.019.
[7] Bouacha, K.; Yallese, M.A.; Mabrouki, T.; Rigal, J.-F. Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. Int. J. Refract. Met. Hard Mater. 2010, 28, 349–361, doi:10.1016/j.ijrmhm.2009.11.011.
[8] Minh, D.T.; The, L.T.; Bao, N.T. Performance of Al2O3 nanofluids in minimum quantity lubrication in hard milling of 60Si2Mn steel using cemented carbide tools. Adv. Mech. Eng. 9 (2017) 1–9, doi:10.1177/1687814017710618.
[9] Tran, M.-D.; Long, T.T.; Chien, T.Q, Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants 2019, 7, 40, doi:10.3390/lubricants7050040.
[10] Duc, T.M.; Long, T.T.; Dong, P.Q, Effect of the alumina nanofluid concentration on minimum quantity lubrication hard machining for sustainable production. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 5977–5988, doi:10.1177/0954406219861992.
[11] Tran Minh Duc, Tran The Long*, Tran Quyet Chien, Ngo Minh Tuan. Study of cutting forces in hard milling of hardox 500 steel under MQCL condition using nano additives. SSRG International Journal of Mechanical Engineering (SSRG-IJME), 2019, 6(11) 1-7.