Phase Effects at Intracavity Cascade Parametric Amplification with Low Frequency Pump

International Journal of Electronics and Communication Engineering
© 2014 by SSRG - IJECE Journal
Volume 1 Issue 6
Year of Publication : 2014
Authors : Rena J. Kasumova
How to Cite?

Rena J. Kasumova, "Phase Effects at Intracavity Cascade Parametric Amplification with Low Frequency Pump," SSRG International Journal of Electronics and Communication Engineering, vol. 1,  no. 6, pp. 7-14, 2014. Crossref,


Theory of intracavity parametric amplification at a low frequency pump has been developed in multilayer domain structure at the constant-intensity approximation. Analytical expression has been obtained for the optimum phase correlation between interacting waves. The numerous estimation of the expected conversion efficiency is presented for conditions of experiment. The author conducts the comparison between conversion efficiency at parametric amplification with a low frequency pump and the general case of frequency upconversion. It is shown that in the first case, by changing the entrance parameters of the signal wave and the wave at sum frequency, it is possible to affect considerably the dynamics of the nonlinear process and to achieve considerable transfer of pump energy to the wave of sum frequency, which heavily distinguishes this process from a traditional case of frequency up-conversion.


intracavity frequency conversion, constant-intensity approximation, the regular domain structure.


[1] N. Blombergen, Nonlinear optics (New York, W.A. Benjamin, 1965).
[2] M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron., 28, 1992, 2631-2654.
[3] R.L. Byer. Quasi phase-matched nonlinear materials and application to devices, Nonlinear Optics, 7, 1994, 235-245.
[4] A.S.Chirkin, and I. V. Shutov, On the possibility of the nondegenerate parametric amplification of optical waves at low-frequency pumping, JETP Letters, 86, 2007, 693-697.
[5] L.A. Eyres, C.B. Eberdt, J.S. Harris, and M.M. Fejer, Growth of periodically - oriented semiconductor films for nonlinear optics, Annual report. C.I. (CNOM, Stanford University, 1996; L.A. Eyres, P.J. Tourreau, T.J. Pinguet, C.B. Ebert, J.S. Harris, M.M. Fejer, B.Gerard, L. Becouarn, and E. Lallier, Quasi-phase-matched frequency conversion in thick all-epitaxial, orientation-patterned GaAs films, Advanced Solid State Lasers, OSA Technical Digest Series, Optical Society of America, 2000, paper TuA2. 
[6 ]M. Charbonneau-Lefort, B. Afeyan, and M. M. Fejer, Optical parametric amplifiers using chirped quasi-phase-matching gratings I: practical design formulas, J. Opt. Soc. Am. B, 25, 2008, 463-480.
[7] U.K. Sapaev and G. Assanto, Engineered quasi-phase matching for multiple parametric generation, Opt. Express, 17, 2009, 3765-3770.
[8] L.E. Myers, R.C. Eckardi, M.M. Fejer, R.L. Byer, and W.R. Bosenberg, Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Optics Letts.,21, 1996, 591-595.
[9] N.I. Kravtsov, G.D. Laptev, I.I. Naumov, A.A. Novikov, V.V. Firsov and A.S. Chirkin, Intracavity quasi-phase matched frequency summing in a laser based on a periodically poled active nonlinear Nd:Mg:LiNbO3 crystal, Quantum Electronics, 32, 2002, 923-924. 
[10] G.D. Laptev, A.A. Novikov, and A.S. Chirkin, Interaction of light waves in active nonlinear and periodically poled nonlinear crystals, JETP Letters, 78, 2003, 45-58.
[11] Z.H.Tagiev, and A.S.Chirkin, Fixed intensity approximation in the theory of nonlinear wave, Zh. Eksp. Teor. Fiz., 73, 1977, 1271-1282.
[12] P.G. Schunemann, S.D. Setzler, L. Mohnkern, T.M. Pollak, D.F. Bliss, D. Weyburne, and K. O'Hearn, 2.05-mcm-laser-pumped orientation-patterned gallium arsenide (OPGaAs) OPO, Proc. Conf. on Lasers and Electro-Optics (CLEO, 22-27 May) 3, 2005, 1835-1837.
[13] O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, Jr., M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, Difference frequency generation of 8-µm radiation in orientation- patterned GaAs, Opt. Lett., 27, 2002, 2091-2093.
[14] J. H. Jung, T. Kato, and T. Kinoshita. Quasiphase-matched second-harmonic generation using periodically photoisomerized azo dye doped polymer film waveguide, J. Appl. Phys.,90, 2001, 801-806.
[15] Z.H. Tagiev, R.J. Kasumova, and A.A. Karimi, Cascade parametric light amplification at low-frequency pumping, J. of Appl. Spectroscopy, 77, 2010, 393-399; R.J. Kasumova, Quasi-phase-matched intracavity laser frequency summation, Applied Optics, 51(13), 2012, 2250-2256.
[16] G.D. Laptev, and A.A. Novikov, Intracavity quasi-phase-matched self-frequency conversion in a periodically poled Nd:Mg:LiNbO3 crystal, Quantum Electronics, 31, 2001, 981-986.
[17] M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, Generation of 740 mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal, Opt. Lett., 24, 1999, 205-207.
[18] Y.F. Chen, Y.S. Chen and S.W. Tsai, Diode-pumped Q-switched laser with intracavity sum frequency mixing in periodically poled KTP, Appl. Phys. B: Lasers and Optics, 79, 2004, 207-210.