A Simplified Method for Determining Settling Time

International Journal of Electronics and Communication Engineering
© 2021 by SSRG - IJECE Journal
Volume 8 Issue 7
Year of Publication : 2021
Authors : T. S. Rathore, J. L. Rathore
How to Cite?

T. S. Rathore, J. L. Rathore, "A Simplified Method for Determining Settling Time," SSRG International Journal of Electronics and Communication Engineering, vol. 8,  no. 7, pp. 14-18, 2021. Crossref, https://doi.org/10.14445/23488549/IJECE-V8I7P103


A simplified method for determining the settling time of the electrical system is presented. Unlike in the method presented by Yildiz, we have not involved the clumsy matrix relations to obtain the CE.


Settling time, stability, loop method, node method, characteristic equation


[1] Z. Shuand C. D. Johnson., Generalization of a frequency domain stability criterion for proper linear time-varying systems based on eigenvalue and coeigenvalue concepts. Proceedings of the IEEEexplorer, (1988).
[2] S. Paul and K. Huper, An analog circuit for eigenvalue calculation and rank filtering, IEEE Trans. on Circuits and Syst. I: Fundamental Theory and Applications, 41(11)(1994)736-740.
[3] J. L. Lee andS. I. Liu, Integrator and differentiator with time constant multiplication using current feedback amplifier, Electronics Letters, 37(6)(2001) 331-333.
[4] A. M. Sodagar., Fully-integrated implementation of large time constant Gm-C integrators, Electronics Letters, 43(1)(2007) 23-24. [5] E. Lindberg, K. Murali,A. Tamaseviciusand L. V. Wangenheim, An eigenvalue study of a double integrator oscillator. Proc. IEEE,978-1-4244-3896-9/09/$25.00 ©2009, 217-220. [6] S.Gao, M. Zhihongand Y. Xinghuo, Feedback control of T-S fuzzy systems based on LTV system theory, Int. J. Electrical Engineering Education, 46(1),(2009) 47-58.
[7] R.E.Thomas, A.J.Rosa, The analysis and design of linear circuits, John Wiley & Sons, 5th Ed.,(2006).
[8] J.W.Nilsson and S. A. Riedel, Electric circuits, Prentice Hall, 6th Ed., (2000).
[9] J.Vlach andK. Singhal, Computer methods for circuit analysis and design, Van Nostrand Reinhold Com., (1983).
[10] A. B.Yildiz, Electric Circuits, Theory and Outline Problems, Part II, Kocaeli University Press, (2006).
[11] B.L.Cochran and A. Grabel, A method for the determination of the TF of electronic circuits. IEEE Trans. Circuit Theory, CT-20(1)(1973).
[12] A.M.Davis andE.A.Moustakas, Analyze active RC networks by decomposition. IEEE Trans. Circuits Syst., CAS-27(5)(1980).
[13] R. D. Middlebrook, Null double injection and the extra element theorem. IEEE Trans. Education, 32(3)(1989).
[14] R.D.Middlebrook, V. J. Vorperian, The N extra element theorem. IEEE Trans. Circuits Syst. I, (9)(1998).
[15] S.B.Haley, The generalized eigenproblem: pole-zero computation. Proceedings of the IEEE.
[16] B.Haley and P. J. Hurst, Pole and Zero estimation in linear circuits. IEEE Trans. Circuits and Systems, 36(6)(1989).
[17] A.S.Hauksdottir, H.Hjaltadottir, Closed-form expressions of transfer functions responses. Proceedings of the IEEE, (2003).
[18] T. Hagiwara, Eigenvalue approach to the calculation of the zeros of a scalar system. Electronics Letters, 28(23)(1992).
[19] Hajimiri, A., Generalized time- and transfer-constant circuit analysis. IEEE Trans. on Circuits and Systems I, 57(6)(2010) 1105-1121.
[20] Ali BekirYildiz, Generalized method based on nodal and mesh analysis for the computation of time constants of linear circuits, Computer Modelling in Engineering and Sciences, 75(1)(2011) 33-42.
[21] G.E.Chatzarakis, M. D. Tortoreliand A. D.Tziolas, Fundamental loop-current method using ‘virtual voltage sources’ technique for special cases. Int. J. of Electrical Engineering Education, 40(3)(2003) 188-207.
[22] G. E. Chatzarakis andM. D. Tortoreli, Node-voltage method using ‘virtual current sources’ technique for special cases, Int. J. of Electrical EngineeringEducation, 41(3)(2004)
[23] T. S. Rathore, Easier node analysis of circuits with non-converting voltage sources, under review, unpublished, (2021).
[24] T. S. Rathore, Loop analysis of circuits with non-convertible current sources, IETE J Education,(2021).